Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Appl ; 31(6): e02388, 2021 09.
Article in English | MEDLINE | ID: mdl-34156123

ABSTRACT

Recently developed methods, including time-to-event and space-to-event models, estimate the abundance of unmarked populations from encounter rates with camera trap arrays, addressing a gap in noninvasive wildlife monitoring. However, estimating abundance from encounter rates relies on assumptions that can be difficult to meet in the field, including random movement, population closure, and an accurate estimate of movement speed. Understanding how these models respond to violation of these assumptions will assist in making them more applicable in real-world settings. We used simulated walk models to test the effects of violating the assumptions of the time-to-event model under four scenarios: (1) incorrectly estimating movement speed, (2) violating closure, (3) individuals moving within simplified territories (i.e., movement restricted to partially overlapping circles), (4) and individuals clustering in preferred habitat. The time-to-event model was robust to closure violations, territoriality, and clustering when cameras were placed randomly. However, the model failed to estimate abundance accurately when movement speed was incorrectly estimated or cameras were placed nonrandomly with respect to habitat. We show that the time-to-event model can provide unbiased estimates of abundance when some assumptions that are commonly violated in wildlife studies are not met. Having a robust method for estimating the abundance of unmarked populations with remote cameras will allow practitioners to monitor a more diverse array of populations noninvasively. With the time-to-event model, placing cameras randomly with respect to animal movement and accurately estimating movement speed allows unbiased estimation of abundance. The model is robust to violating the other assumptions we tested.


Subject(s)
Animals, Wild , Ecosystem , Animals , Humans , Movement , Population Density
2.
PLoS One ; 13(3): e0194719, 2018.
Article in English | MEDLINE | ID: mdl-29579129

ABSTRACT

Broad scale population estimates of declining species are desired for conservation efforts. However, for many secretive species including large carnivores, such estimates are often difficult. Based on published density estimates obtained through camera trapping, presence/absence data, and globally available predictive variables derived from satellite imagery, we modelled density and occurrence of a large carnivore, the jaguar, across the species' entire range. We then combined these models in a hierarchical framework to estimate the total population. Our models indicate that potential jaguar density is best predicted by measures of primary productivity, with the highest densities in the most productive tropical habitats and a clear declining gradient with distance from the equator. Jaguar distribution, in contrast, is determined by the combined effects of human impacts and environmental factors: probability of jaguar occurrence increased with forest cover, mean temperature, and annual precipitation and declined with increases in human foot print index and human density. Probability of occurrence was also significantly higher for protected areas than outside of them. We estimated the world's jaguar population at 173,000 (95% CI: 138,000-208,000) individuals, mostly concentrated in the Amazon Basin; elsewhere, populations tend to be small and fragmented. The high number of jaguars results from the large total area still occupied (almost 9 million km2) and low human densities (< 1 person/km2) coinciding with high primary productivity in the core area of jaguar range. Our results show the importance of protected areas for jaguar persistence. We conclude that combining modelling of density and distribution can reveal ecological patterns and processes at global scales, can provide robust estimates for use in species assessments, and can guide broad-scale conservation actions.


Subject(s)
Panthera/physiology , Animals , Conservation of Natural Resources , Ecosystem , Models, Theoretical , Population Density
3.
J Anim Ecol ; 86(5): 1224-1234, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28605016

ABSTRACT

Deciding when to terminate care of offspring is a key consideration for parents. Prolonging care may increase fitness of current offspring, but it can also reduce opportunities for future reproduction. Despite its evolutionary importance, few studies have explored the optimal duration of parental care, particularly among large carnivores. We used a 40-year dataset to assess the trade-offs associated with the length of maternal care in leopards in the Sabi Sand Game Reserve, South Africa. We compared the costs imposed by care on the survival and residual reproductive value of leopard mothers against the benefits derived from maternal care in terms of increased offspring survival, recruitment and reproduction. We also examined the demographic and ecological factors affecting the duration of care in the light of five explanatory hypotheses: litter size, sex allocation, resource limitation, timing of independence and terminal investment. Duration of care exhibited by female leopards varied markedly, from 9 to 35 months. Mothers did not appear to suffer any short- or long-term survival costs from caring for cubs, but extending care reduced the number of litters that mothers could produce during their lifetimes. Interestingly, the duration of care did not appear to affect the post-independence survival or reproductive success of offspring (although it may have indirectly affected offspring survival by influencing dispersal distance). However, results from generalised linear mixed models showed that mothers prolonged care during periods of prey scarcity, supporting the resource limitation hypothesis. Female leopards also cared for sons longer than daughters, in line with the sex-allocation hypothesis. Cub survival is an important determinant of the lifetime reproductive success in leopards. By buffering offspring against environmental perturbation without jeopardising their own survivorship, female leopards apparently "hedge their bets" with current offspring rather than gamble on future offspring which have a small probability of surviving. In many species, parents put their own needs before that of their offspring. Leopard mothers appear sensitive to their offspring's demands, and adjust levels of care accordingly.


Subject(s)
Maternal Behavior , Panthera , Reproduction , Animals , Animals, Newborn , Environment , Female , Litter Size , Population Dynamics , Pregnancy , South Africa
4.
Integr Zool ; 11(4): 322-32, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27136188

ABSTRACT

As an apex predator the Amur tiger (Panthera tigris altaica) could play a pivotal role in maintaining the integrity of forest ecosystems in Northeast Asia. Due to habitat loss and harvest over the past century, tigers rapidly declined in China and are now restricted to the Russian Far East and bordering habitat in nearby China. To facilitate restoration of the tiger in its historical range, reliable estimates of population size are essential to assess effectiveness of conservation interventions. Here we used camera trap data collected in Hunchun National Nature Reserve from April to June 2013 and 2014 to estimate tiger density and abundance using both maximum likelihood and Bayesian spatially explicit capture-recapture (SECR) methods. A minimum of 8 individuals were detected in both sample periods and the documentation of marking behavior and reproduction suggests the presence of a resident population. Using Bayesian SECR modeling within the 11 400 km(2) state space, density estimates were 0.33 and 0.40 individuals/100 km(2) in 2013 and 2014, respectively, corresponding to an estimated abundance of 38 and 45 animals for this transboundary Sino-Russian population. In a maximum likelihood framework, we estimated densities of 0.30 and 0.24 individuals/100 km(2) corresponding to abundances of 34 and 27, in 2013 and 2014, respectively. These density estimates are comparable to other published estimates for resident Amur tiger populations in the Russian Far East. This study reveals promising signs of tiger recovery in Northeast China, and demonstrates the importance of connectivity between the Russian and Chinese populations for recovering tigers in Northeast China.


Subject(s)
Tigers , Animals , China , Conservation of Natural Resources , Endangered Species , Female , Male , Population Density , Russia
5.
Ecol Appl ; 25(7): 1911-21, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26591456

ABSTRACT

Natal dispersal promotes inter-population linkage, and is key to spatial distribution of populations. Degradation of suitable landscape structures beyond the specific threshold of an individual's ability to disperse can therefore lead to disruption of functional landscape connectivity and impact metapopulation function. Because it ignores behavioral responses of individuals, structural connectivity is easier to assess than functional connectivity and is often used as a surrogate for landscape connectivity modeling. However using structural resource selection models as surrogate for modeling functional connectivity through dispersal could be erroneous. We tested how well a second-order resource selection function (RSF) models (structural connectivity), based on GPS telemetry data from resident adult leopard (Panthera pardus L.), could predict subadult habitat use during dispersal (functional connectivity). We created eight non-exclusive subsets of the subadult data based on differing definitions of dispersal to assess the predictive ability of our adult-based RSF model extrapolated over a broader landscape. Dispersing leopards used habitats in accordance with adult selection patterns, regardless of the definition of dispersal considered. We demonstrate that, for a wide-ranging apex carnivore, functional connectivity through natal dispersal corresponds to structural connectivity as modeled by a second-order RSF. Mapping of the adult-based habitat classes provides direct visualization of the potential linkages between populations, without the need to model paths between a priori starting and destination points. The use of such landscape scale RSFs may provide insight into predicting suitable dispersal habitat peninsulas in human-dominated landscapes where mitigation of human-wildlife conflict should be focused. We recommend the use of second-order RSFs for landscape conservation planning and propose a similar approach to the conservation of other wide-ranging large carnivore species where landscape-scale resource selection data already exist.


Subject(s)
Animal Distribution , Ecosystem , Panthera/physiology , Aging , Animals , Conservation of Natural Resources , Female , Male , Models, Biological , Reproducibility of Results , South Africa
6.
Integr Zool ; 10(4): 344-53, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26096683

ABSTRACT

Poaching as well as loss of habitat and prey are identified as causes of tiger population declines. Although some studies have examined habitat requirements and prey availability, few studies have quantified cause-specific mortality of tigers. We used cumulative incidence functions (CIFs) to quantify cause-specific mortality rates of tigers, expanding and refining earlier studies to assess the potential impact of a newly emerging disease. To quantify changes in tiger mortality over time, we re-examined data first collected by Goodrich et al. (; study period 1: 1992-2004) as well as new telemetry data collected since January 2005 (study period 2: 2005-2012) using a total of 57 tigers (27 males and 30 females) monitored for an average of 747 days (range 26-4718 days). Across the entire study period (1992 to 2012) we found an estimated average annual survival rate of 0.75 for all tigers combined. Poaching was the primary cause of mortality during both study periods, followed by suspected poaching, distemper and natural/unknown causes. Since 2005, poaching mortality has remained relatively constant and, if combined with suspected poaching, may account for a loss of 17-19% of the population each year. Canine distemper virus (CDV) may be an additive form of mortality to the population, currently accounting for an additional 5%. Despite this relatively new source of mortality, poaching remains the main threat to Amur tiger survival and, therefore, population growth.


Subject(s)
Distemper/mortality , Tigers , Animals , Cause of Death , Distemper Virus, Canine , Ecosystem , Female , Male , Population Dynamics
7.
J Anim Ecol ; 80(6): 1246-57, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21615401

ABSTRACT

1. Understanding the interaction among predators and between predation and climate is critical to understanding the mechanisms for compensatory mortality. We used data from 1999 radio-marked neonatal elk (Cervus elaphus) calves from 12 populations in the north-western United States to test for effects of predation on neonatal survival, and whether predation interacted with climate to render mortality compensatory. 2. Weibull survival models with a random effect for each population were fit as a function of the number of predator species in a community (3-5), seven indices of climatic variability, sex, birth date, birth weight, and all interactions between climate and predators. Cumulative incidence functions (CIF) were used to test whether the effects of individual species of predators were additive or compensatory. 3. Neonatal elk survival to 3 months declined following hotter previous summers and increased with higher May precipitation, especially in areas with wolves and/or grizzly bears. Mortality hazards were significantly lower in systems with only coyotes (Canis latrans), cougars (Puma concolor) and black bears (Ursus americanus) compared to higher mortality hazards experienced with gray wolves (Canis lupus) and grizzly bears (Ursus horribilis). 4. In systems with wolves and grizzly bears, mortality by cougars decreased, and predation by bears was the dominant cause of neonatal mortality. Only bear predation appeared additive and occurred earlier than other predators, which may render later mortality by other predators compensatory as calves age. Wolf predation was low and most likely a compensatory source of mortality for neonatal elk calves. 5. Functional redundancy and interspecific competition among predators may combine with the effects of climate on vulnerability to predation to drive compensatory mortality of neonatal elk calves. The exception was the evidence for additive bear predation. These results suggest that effects of predation by recovering wolves on neonatal elk survival, a contentious issue for management of elk populations, may be less important than the composition of the predator community. Future studies would benefit by synthesizing overwinter calf and adult-survival data sets, ideally from experimental studies, to test the roles of predation in annual compensatory and additive mortality of elk.


Subject(s)
Biodiversity , Carnivora/physiology , Deer/physiology , Predatory Behavior , Animals , Climate , Female , Food Chain , Male , Northwestern United States , Population Dynamics
8.
Ecology ; 90(10): 2913-21, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19886499

ABSTRACT

Many wildlife species are managed based on the compensatory mortality hypothesis, which predicts that harvest mortality (especially adult male mortality) will trigger density-dependent responses in reproduction, survival, and population growth caused via reduced competition for resources. We tested the compensatory mortality hypothesis on two cougar (Puma concolor) populations in Washington, USA (one heavily hunted and one lightly hunted). We estimated population growth, density, survival, and reproduction to determine the effects of hunting on cougar population demography based on data collected from 2002 to 2007. In the heavily hunted population, the total hunting mortality rate (mean +/- SD) was 0.24 +/- 0.05 (0.35 +/- 0.08 for males, 0.16 +/- 0.05 for females). In the lightly hunted population, the total hunting mortality rate was 0.11 +/- 0.04 (0.16 +/- 0.06 for males, 0.07 +/- 0.05 for females). The compensatory mortality hypothesis predicts that higher mortality will result in higher maternity, kitten survival, reproductive success, and lower natural mortality. We found no differences in rates of maternity or natural mortality between study areas, and kitten survival was lower in the heavily hunted population. We rejected the compensatory mortality hypothesis because vital rates did not compensate for hunting mortality. Heavy harvest corresponded with increased immigration, reduced kitten survival, reduced female population growth, and a younger overall age structure. Light harvest corresponded with increased emigration, higher kitten survival, increased female population growth, and an older overall age structure. Managers should not assume the existence of compensatory mortality when developing harvest prescriptions for cougars.


Subject(s)
Population Dynamics , Puma/physiology , Animals , Female , Human Activities , Humans , Male , Population Density , Reproduction , Washington
9.
Ecol Appl ; 18(4): 1028-37, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18536260

ABSTRACT

Carnivores are widely hunted for both sport and population control, especially where they conflict with human interests. It is widely believed that sport hunting is effective in reducing carnivore populations and related human-carnivore conflicts, while maintaining viable populations. However, the way in which carnivore populations respond to harvest can vary greatly depending on their social structure, reproductive strategies, and dispersal patterns. For example, hunted cougar (Puma concolor) populations have shown a great degree of resiliency. Although hunting cougars on a broad geographic scale (> 2000 km2) has reduced densities, hunting of smaller areas (i.e., game management units, < 1000 km2), could conceivably fail because of increased immigration from adjacent source areas. We monitored a heavily hunted population from 2001 to 2006 to test for the effects of hunting at a small scale (< 1000 km2) and to gauge whether population control was achieved (lambda < or = 1.0) or if hunting losses were negated by increased immigration allowing the population to remain stable or increase (lambda > or = 1.0). The observed growth rate of 1.00 was significantly higher than our predicted survival/fecundity growth rates (using a Leslie matrix) of 0.89 (deterministic) and 0.84 (stochastic), with the difference representing an 11-16% annual immigration rate. We observed no decline in density of the total population or the adult population, but a significant decrease in the average age of independent males. We found that the male component of the population was increasing (observed male population growth rate, lambda(OM) = 1.09), masking a decrease in the female component (lambda(OF) = 0.91). Our data support the compensatory immigration sink hypothesis; cougar removal in small game management areas (< 1000 km2) increased immigration and recruitment of younger animals from adjacent areas, resulting in little or no reduction in local cougar densities and a shift in population structure toward younger animals. Hunting in high-quality habitats may create an attractive sink, leading to misinterpretation of population trends and masking population declines in the sink and surrounding source areas.


Subject(s)
Puma , Age Factors , Animals , Female , Geography , Male , Population Density , Population Dynamics , Reproduction , Sex Factors , Washington
SELECTION OF CITATIONS
SEARCH DETAIL
...