Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 352
Filter
1.
Nat Commun ; 14(1): 101, 2023 01 06.
Article in English | MEDLINE | ID: mdl-36609508

ABSTRACT

Forest mortality caused by convective storms (windthrow) is a major disturbance in the Amazon. However, the linkage between windthrows at the surface and convective storms in the atmosphere remains unclear. In addition, the current Earth system models (ESMs) lack mechanistic links between convective wind events and tree mortality. Here we find an empirical relationship that maps convective available potential energy, which is well simulated by ESMs, to the spatial pattern of large windthrow events. This relationship builds connections between strong convective storms and forest dynamics in the Amazon. Based on the relationship, our model projects a 51 ± 20% increase in the area favorable to extreme storms, and a 43 ± 17% increase in windthrow density within the Amazon by the end of this century under the high-emission scenario (SSP 585). These results indicate significant changes in tropical forest composition and carbon cycle dynamics under climate change.


Subject(s)
Forests , Global Warming , Trees , Climate Change , Wind
2.
Front Plant Sci ; 13: 825097, 2022.
Article in English | MEDLINE | ID: mdl-35401584

ABSTRACT

With current observations and future projections of more intense and frequent droughts in the tropics, understanding the impact that extensive dry periods may have on tree and ecosystem-level transpiration and concurrent carbon uptake has become increasingly important. Here, we investigate paired soil and tree water extraction dynamics in an old-growth upland forest in central Amazonia during the 2018 dry season. Tree water use was assessed via radial patterns of sap flow in eight dominant canopy trees, each a different species with a range in diameter, height, and wood density. Paired multi-sensor soil moisture probes used to quantify volumetric water content dynamics and soil water extraction within the upper 100 cm were installed adjacent to six of those trees. To link depth-specific water extraction patterns to root distribution, fine root biomass was assessed through the soil profile to 235 cm. To scale tree water use to the plot level (stand transpiration), basal area was measured for all trees within a 5 m radius around each soil moisture probe. The sensitivity of tree transpiration to reduced precipitation varied by tree, with some increasing and some decreasing in water use during the dry period. Tree-level water use scaled with sapwood area, from 11 to 190 L per day. Stand level water use, based on multiple plots encompassing sap flow and adjacent trees, varied from ∼1.7 to 3.3 mm per day, increasing linearly with plot basal area. Soil water extraction was dependent on root biomass, which was dense at the surface (i.e., 45% in the upper 5 cm) and declined dramatically with depth. As the dry season progressed and the upper soil dried, soil water extraction shifted to deeper levels and model projections suggest that much of the water used during the month-long dry-down could be extracted from the upper 2-3 m. Results indicate variation in rates of soil water extraction across the research area and, temporally, through the soil profile. These results provide key information on whole-tree contributions to transpiration by canopy trees as water availability changes. In addition, information on simultaneous stand level dynamics of soil water extraction that can inform mechanistic models that project tropical forest response to drought.

3.
Phys Rev Lett ; 126(17): 177601, 2021 Apr 30.
Article in English | MEDLINE | ID: mdl-33988428

ABSTRACT

Revealing the predominant driving force behind symmetry breaking in correlated materials is sometimes a formidable task due to the intertwined nature of different degrees of freedom. This is the case for La_{2-x}Sr_{x}NiO_{4+δ}, in which coupled incommensurate charge and spin stripes form at low temperatures. Here, we use resonant x-ray photon correlation spectroscopy to study the temporal stability and domain memory of the charge and spin stripes in La_{2-x}Sr_{x}NiO_{4+δ}. Although spin stripes are more spatially correlated, charge stripes maintain a better temporal stability against temperature change. More intriguingly, charge order shows robust domain memory with thermal cycling up to 250 K, far above the ordering temperature. These results demonstrate the pinning of charge stripes to the lattice and that charge condensation is the predominant factor in the formation of stripe orders in nickelates.

5.
Chromosome Res ; 29(1): 19-36, 2021 03.
Article in English | MEDLINE | ID: mdl-33686484

ABSTRACT

The organization of chromatin into higher-order structures and its condensation process represent one of the key challenges in structural biology. This is important for elucidating several disease states. To address this long-standing problem, development of advanced imaging methods has played an essential role in providing understanding into mitotic chromosome structure and compaction. Amongst these are two fast evolving fluorescence imaging technologies, specifically fluorescence lifetime imaging (FLIM) and super-resolution microscopy (SRM). FLIM in particular has been lacking in the application of chromosome research while SRM has been successfully applied although not widely. Both these techniques are capable of providing fluorescence imaging with nanometer information. SRM or "nanoscopy" is capable of generating images of DNA with less than 50 nm resolution while FLIM when coupled with energy transfer may provide less than 20 nm information. Here, we discuss the advantages and limitations of both methods followed by their contribution to mitotic chromosome studies. Furthermore, we highlight the future prospects of how advancements in new technologies can contribute in the field of chromosome science.


Subject(s)
Chromatin , Chromosomes , Chromosomes/genetics , Microscopy, Fluorescence
6.
J Synchrotron Radiat ; 27(Pt 1): 158-163, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31868748

ABSTRACT

Advanced imaging is useful for understanding the three-dimensional (3D) growth of cells. X-ray tomography serves as a powerful noninvasive, nondestructive technique that can fulfill these purposes by providing information about cell growth within 3D platforms. There are a limited number of studies taking advantage of synchrotron X-rays, which provides a large field of view and suitable resolution to image cells within specific biomaterials. In this study, X-ray synchrotron radiation microtomography at Diamond Light Source and advanced image processing were used to investigate cellular infiltration of HeLa cells within poly L-lactide (PLLA) scaffolds. This study demonstrates that synchrotron X-rays using phase contrast is a useful method to understand the 3D growth of cells in PLLA electrospun scaffolds. Two different fiber diameter (2 and 4 µm) scaffolds with different pore sizes, grown over 2, 5 and 8 days in vitro, were examined for infiltration and cell connectivity. After performing visualization by segmentation of the cells from the fibers, the results clearly show deeper cell growth and higher cellular interconnectivity in the 4 µm fiber diameter scaffold. This indicates the potential for using such 3D technology to study cell-scaffold interactions for future medical use.


Subject(s)
HeLa Cells/ultrastructure , Tissue Scaffolds , X-Ray Microtomography/methods , Humans , Image Processing, Computer-Assisted , Imaging, Three-Dimensional , Polyesters , Porosity , Synchrotrons
7.
Phys Rev Lett ; 123(19): 197202, 2019 Nov 08.
Article in English | MEDLINE | ID: mdl-31765174

ABSTRACT

Collective dynamics often play an important role in determining the stability of ground states for both naturally occurring materials and metamaterials. We studied the temperature dependent dynamics of antiferromagnetically ordered superdomains in a square artificial spin lattice using soft x-ray photon correlation spectroscopy. We observed an exponential slowing down of superdomain wall motion below the antiferromagnetic onset temperature, similar to the behavior of typical bulk antiferromagnets. Using a continuous time random walk model we show that these superdomain walls undergo low-temperature ballistic and high-temperature diffusive motions.

8.
Front Plant Sci ; 10: 830, 2019.
Article in English | MEDLINE | ID: mdl-31316536

ABSTRACT

Current climate change scenarios indicate warmer temperatures and the potential for more extreme droughts in the tropics, such that a mechanistic understanding of the water cycle from individual trees to landscapes is needed to adequately predict future changes in forest structure and function. In this study, we contrasted physiological responses of tropical trees during a normal dry season with the extreme dry season due to the 2015-2016 El Niño-Southern Oscillation (ENSO) event. We quantified high resolution temporal dynamics of sap velocity (Vs), stomatal conductance (gs) and leaf water potential (ΨL) of multiple canopy trees, and their correlations with leaf temperature (Tleaf) and environmental conditions [direct solar radiation, air temperature (Tair) and vapor pressure deficit (VPD)]. The experiment leveraged canopy access towers to measure adjacent trees at the ZF2 and Tapajós tropical forest research (near the cities of Manaus and Santarém). The temporal difference between the peak of gs (late morning) and the peak of VPD (early afternoon) is one of the major regulators of sap velocity hysteresis patterns. Sap velocity displayed species-specific diurnal hysteresis patterns reflected by changes in Tleaf. In the morning, Tleaf and sap velocity displayed a sigmoidal relationship. In the afternoon, stomatal conductance declined as Tleaf approached a daily peak, allowing ΨL to begin recovery, while sap velocity declined with an exponential relationship with Tleaf. In Manaus, hysteresis indices of the variables Tleaf-Tair and ΨL-Tleaf were calculated for different species and a significant difference (p < 0.01, α = 0.05) was observed when the 2015 dry season (ENSO period) was compared with the 2017 dry season ("control scenario"). In some days during the 2015 ENSO event, Tleaf approached 40°C for all studied species and the differences between Tleaf and Tair reached as high at 8°C (average difference: 1.65 ± 1.07°C). Generally, Tleaf was higher than Tair during the middle morning to early afternoon, and lower than Tair during the early morning, late afternoon and night. Our results support the hypothesis that partial stomatal closure allows for a recovery in ΨL during the afternoon period giving an observed counterclockwise hysteresis pattern between ΨL and Tleaf.

9.
Nat Commun ; 10(1): 1435, 2019 03 29.
Article in English | MEDLINE | ID: mdl-30926816

ABSTRACT

Although CDW correlations are a ubiquitous feature of the superconducting cuprates, their disparate properties suggest a crucial role for pinning the CDW to the lattice. Here, we report coherent resonant X-ray speckle correlation analysis, which directly determines the reproducibility of CDW domain patterns in La1.875Ba0.125CuO4 (LBCO 1/8) with thermal cycling. While CDW order is only observed below 54 K, where a structural phase transition creates inequivalent Cu-O bonds, we discover remarkably reproducible CDW domain memory upon repeated cycling to far higher temperatures. That memory is only lost on cycling to 240(3) K, which recovers the four-fold symmetry of the CuO2 planes. We infer that the structural features that develop below 240 K determine the CDW pinning landscape below 54 K. This opens a view into the complex coupling between charge and lattice degrees of freedom in superconducting cuprates.

10.
Nat Commun ; 9(1): 5013, 2018 11 27.
Article in English | MEDLINE | ID: mdl-30479333

ABSTRACT

Manipulating magnetic domains is essential for many technological applications. Recent breakthroughs in Antiferromagnetic Spintronics brought up novel concepts for electronic device development. Imaging antiferromagnetic domains is of key importance to this field. Unfortunately, some of the basic domain types, such as antiphase domains, cannot be imaged by conventional techniques. Herein, we present a new domain projection imaging technique based on the localization of domain boundaries by resonant magnetic diffraction of coherent X rays. Contrast arises from reduction of the scattered intensity at the domain boundaries due to destructive interference effects. We demonstrate this approach by imaging antiphase domains in a collinear antiferromagnet Fe2Mo3O8, and observe evidence of domain wall interaction with a structural defect. This technique does not involve any numerical algorithms. It is fast, sensitive, produces large-scale images in a single-exposure measurement, and is applicable to a variety of magnetic domain types.

11.
Glob Chang Biol ; 24(12): 5867-5881, 2018 12.
Article in English | MEDLINE | ID: mdl-30256494

ABSTRACT

Amazon forests account for ~25% of global land biomass and tropical tree species. In these forests, windthrows (i.e., snapped and uprooted trees) are a major natural disturbance, but the rates and mechanisms of recovery are not known. To provide a predictive framework for understanding the effects of windthrows on forest structure and functional composition (DBH ≥10 cm), we quantified biomass recovery as a function of windthrow severity (i.e., fraction of windthrow tree mortality on Landsat pixels, ranging from 0%-70%) and time since disturbance for terra-firme forests in the Central Amazon. Forest monitoring allowed insights into the processes and mechanisms driving the net biomass change (i.e., increment minus loss) and shifts in functional composition. Windthrown areas recovering for between 4-27 years had biomass stocks as low as 65.2-91.7 Mg/ha or 23%-38% of those in nearby undisturbed forests (~255.6 Mg/ha, all sites). Even low windthrow severities (4%-20% tree mortality) caused decadal changes in biomass stocks and structure. While rates of biomass increment in recovering vegetation were nearly double (6.3 ± 1.4 Mg ha-1  year-1 ) those of undisturbed forests (~3.7 Mg ha-1  year-1 ), biomass loss due to post-windthrow mortality was high (up to -7.5 ± 8.7 Mg ha-1  year-1 , 8.5 years since disturbance) and unpredictable. Consequently, recovery to 90% of "pre-disturbance" biomass takes up to 40 years. Resprouting trees contributed little to biomass recovery. Instead, light-demanding, low-density genera (e.g., Cecropia, Inga, Miconia, Pourouma, Tachigali, and Tapirira) were favored, resulting in substantial post-windthrow species turnover. Shifts in functional composition demonstrate that windthrows affect the resilience of live tree biomass by favoring soft-wooded species with shorter life spans that are more vulnerable to future disturbances. As the time required for forests to recover biomass is likely similar to the recurrence interval of windthrows triggering succession, windthrows have the potential to control landscape biomass/carbon dynamics and functional composition in Amazon forests.


Subject(s)
Biomass , Forests , Trees , Wind , Brazil , Carbon , Tropical Climate
12.
Opt Express ; 26(12): 14915-14927, 2018 Jun 11.
Article in English | MEDLINE | ID: mdl-30114796

ABSTRACT

We have developed a randomized grating condenser zone plate (GCZP) that provides a µm-scale probe for use in x-ray ptychography. This delivers a significantly better x-ray throughput than probes defined by pinhole apertures, while providing a clearly-defined level of phase diversity to the illumination on the sample, and helping to reduce the dynamic range of the detected signal by spreading the zero-order light over an extended area of the detector. The first use of this novel x-ray optical element has been demonstrated successfully for both amplitude and phase contrast imaging using soft x-rays on the TwinMic beamline at the Elettra synchrotron.

13.
Sci Rep ; 7(1): 9823, 2017 08 29.
Article in English | MEDLINE | ID: mdl-28852007

ABSTRACT

Mesoscale thermal transport is of fundamental interest and practical importance in materials such as thermoelectrics. Coherent lattice vibrations (acoustic phonons) govern thermal transport in crystalline solids and are affected by the shape, size, and defect density in nanoscale materials. The advent of hard x-ray free electron lasers (XFELs) capable of producing ultrafast x-ray pulses has significantly impacted the understanding of acoustic phonons by enabling their direct study with x-rays. However, previous studies have reported ensemble-averaged results that cannot distinguish the impact of mesoscale heterogeneity on the phonon dynamics. Here we use Bragg coherent diffractive imaging (BCDI) to resolve the 4D evolution of the acoustic phonons in a single zinc oxide rod with a spatial resolution of 50 nm and a temporal resolution of 25 picoseconds. We observe homogeneous (lattice breathing/rotation) and inhomogeneous (shear) acoustic phonon modes, which are compared to finite element simulations. We investigate the possibility of changing phonon dynamics by altering the crystal through acid etching. We find that the acid heterogeneously dissolves the crystal volume, which will significantly impact the phonon dynamics. In general, our results represent the first step towards understanding the effect of structural properties at the individual crystal level on phonon dynamics.

14.
IUCrJ ; 4(Pt 2): 147-151, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-28250953

ABSTRACT

Biological sample-preparation procedures have been developed for imaging human chromosomes under cryogenic conditions. A new experimental setup, developed for imaging frozen samples using beamline I13 at Diamond Light Source, is described. This manuscript describes the equipment and experimental procedures as well as the authors' first ptychographic reconstructions using X-rays.

15.
Plant Cell Environ ; 40(3): 441-452, 2017 03.
Article in English | MEDLINE | ID: mdl-27943309

ABSTRACT

Tropical forests absorb large amounts of atmospheric CO2 through photosynthesis but elevated temperatures suppress this absorption and promote monoterpene emissions. Using 13 CO2 labeling, here we show that monoterpene emissions from tropical leaves derive from recent photosynthesis and demonstrate distinct temperature optima for five groups (Groups 1-5), potentially corresponding to different enzymatic temperature-dependent reaction mechanisms within ß-ocimene synthases. As diurnal and seasonal leaf temperatures increased during the Amazonian 2015 El Niño event, leaf and landscape monoterpene emissions showed strong linear enrichments of ß-ocimenes (+4.4% °C-1 ) at the expense of other monoterpene isomers. The observed inverse temperature response of α-pinene (-0.8% °C-1 ), typically assumed to be the dominant monoterpene with moderate reactivity, was not accurately simulated by current global emission models. Given that ß-ocimenes are highly reactive with respect to both atmospheric and biological oxidants, the results suggest that highly reactive ß-ocimenes may play important roles in the thermotolerance of photosynthesis by functioning as effective antioxidants within plants and as efficient atmospheric precursors of secondary organic aerosols. Thus, monoterpene composition may represent a new sensitive 'thermometer' of leaf oxidative stress and atmospheric reactivity, and therefore a new tool in future studies of warming impacts on tropical biosphere-atmosphere carbon-cycle feedbacks.


Subject(s)
Atmosphere , Climate Change , Forests , Monoterpenes/analysis , Temperature , Tropical Climate , Carbon/metabolism , Carbon Dioxide/metabolism , Carbon Isotopes , Circadian Rhythm/physiology , El Nino-Southern Oscillation , Plant Leaves/physiology , Seasons , Volatile Organic Compounds/metabolism
16.
Cytopathology ; 28(1): 24-30, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27245607

ABSTRACT

OBJECTIVE: Liquid-based cytology (LBC) has been used for non-gynaecological specimens since its introduction into routine use in cervical cytology in the mid-1990s. There are still relatively few large studies comparing performance in reporting the head and neck fine-needle aspirations (H&N FNA) processed by LBC only to conventional direct smears (CDS). METHODS: This study compared 686 H&N FNAs processed by LBC only with 3719 CDS. All were taken under ultrasound (US) guidance by a small cohort of three consultant radiologists and reported by the author. RESULTS: The (smaller) LBC sample was statistically representative of the larger CDS population at an alpha level of 0.05. There was no difference between CDS and LBC at a 95% confidence interval (CI) when comparing specificity and sensitivity (specificity: 94.8-96.5% versus 90.2-95.4%; sensitivity: 91.4-94.1% versus 86.8-93.4%). The inadequate rate between the two techniques was similar, 0.5-1.0% for CDS versus 0.7-2.5% for LBC. The significance difference was in the suspicious rate which was greater at 2.8-5.8% for LBC versus 1.7-2.6% for CDS. Consequently, there was a slight but non-significant difference between the two populations with respect to the overall accuracy: 93.5-95.1% for CDS versus 89.4-93.7% for LBC. CONCLUSIONS: While there are morphological differences between LBC and CDS in H&N FNAs, once a degree of familiarity is achieved, the two techniques have equivalent sensitivity, specificity and inadequate rates.


Subject(s)
Biopsy, Fine-Needle , Cytodiagnosis , Head and Neck Neoplasms/diagnosis , Female , Head and Neck Neoplasms/epidemiology , Head and Neck Neoplasms/pathology , Humans , Male
17.
Ecol Appl ; 26(7): 2225-2237, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27755720

ABSTRACT

Wind disturbance can create large forest blowdowns, which greatly reduces live biomass and adds uncertainty to the strength of the Amazon carbon sink. Observational studies from within the central Amazon have quantified blowdown size and estimated total mortality but have not determined which trees are most likely to die from a catastrophic wind disturbance. Also, the impact of spatial dependence upon tree mortality from wind disturbance has seldom been quantified, which is important because wind disturbance often kills clusters of trees due to large treefalls killing surrounding neighbors. We examine (1) the causes of differential mortality between adult trees from a 300-ha blowdown event in the Peruvian region of the northwestern Amazon, (2) how accounting for spatial dependence affects mortality predictions, and (3) how incorporating both differential mortality and spatial dependence affect the landscape level estimation of necromass produced from the blowdown. Standard regression and spatial regression models were used to estimate how stem diameter, wood density, elevation, and a satellite-derived disturbance metric influenced the probability of tree death from the blowdown event. The model parameters regarding tree characteristics, topography, and spatial autocorrelation of the field data were then used to determine the consequences of non-random mortality for landscape production of necromass through a simulation model. Tree mortality was highly non-random within the blowdown, where tree mortality rates were highest for trees that were large, had low wood density, and were located at high elevation. Of the differential mortality models, the non-spatial models overpredicted necromass, whereas the spatial model slightly underpredicted necromass. When parameterized from the same field data, the spatial regression model with differential mortality estimated only 7.5% more dead trees across the entire blowdown than the random mortality model, yet it estimated 51% greater necromass. We suggest that predictions of forest carbon loss from wind disturbance are sensitive to not only the underlying spatial dependence of observations, but also the biological differences between individuals that promote differential levels of mortality.


Subject(s)
Forests , Trees , Wind , Environmental Monitoring , Models, Biological , Peru
18.
Ultramicroscopy ; 171: 77-81, 2016 12.
Article in English | MEDLINE | ID: mdl-27643460

ABSTRACT

We propose an extension of ptychography where the target sample is scanned separately through several probes with distinct amplitude and phase profiles and a diffraction image is recorded for each probe and each sample translation. The resulting probe-diverse dataset is used to iteratively retrieve high-resolution images of the sample and all probes simultaneously. The method is shown to yield significant improvement in the reconstructed sample image compared to the image obtained using the standard single-probe ptychographic phase-retrieval scheme.

19.
Org Biomol Chem ; 13(4): 995-9, 2015 Jan 28.
Article in English | MEDLINE | ID: mdl-25429697

ABSTRACT

The simple reaction of phenylthiol with 8-MeS-BODIPY (1) in dichloromethane was readily accomplished to form 8-PhS-BODIPY (2). If the reaction is performed in THF 3,8-bis(phenylthio)-BODIPY (3) and 3,5,8-tris(phenylthio)-BODIPY (4) are sequentially formed in an unprecedented reaction. This provides a simple new methodology for the introduction of the phenylthio-moiety in the 3- and 5-positions. Alkyl thiols do not form multi-thiolated products under identical conditions, as exemplified using EtSH, where only 8-EtS-BODIPY (5) is formed.


Subject(s)
Boron Compounds/chemistry , Fluorescent Dyes/chemistry , Sulfhydryl Compounds/chemistry , Color , Models, Molecular , Molecular Conformation , Solvents/chemistry
20.
PLoS One ; 9(8): e103711, 2014.
Article in English | MEDLINE | ID: mdl-25099118

ABSTRACT

Canopy gaps created by wind-throw events, or blowdowns, create a complex mosaic of forest patches varying in disturbance intensity and recovery in the Central Amazon. Using field and remote sensing data, we investigated the short-term (four-year) effects of large (>2000 m(2)) blowdown gaps created during a single storm event in January 2005 near Manaus, Brazil, to study (i) how forest structure and composition vary with disturbance gradients and (ii) whether tree diversity is promoted by niche differentiation related to wind-throw events at the landscape scale. In the forest area affected by the blowdown, tree mortality ranged from 0 to 70%, and was highest on plateaus and slopes. Less impacted areas in the region affected by the blowdown had overlapping characteristics with a nearby unaffected forest in tree density (583 ± 46 trees ha(-1)) (mean ± 99% Confidence Interval) and basal area (26.7 ± 2.4 m(2) ha(-1)). Highly impacted areas had tree density and basal area as low as 120 trees ha(-1) and 14.9 m(2) ha(-1), respectively. In general, these structural measures correlated negatively with an index of tree mortality intensity derived from satellite imagery. Four years after the blowdown event, differences in size-distribution, fraction of resprouters, floristic composition and species diversity still correlated with disturbance measures such as tree mortality and gap size. Our results suggest that the gradients of wind disturbance intensity encompassed in large blowdown gaps (>2000 m(2)) promote tree diversity. Specialists for particular disturbance intensities existed along the entire gradient. The existence of species or genera taking an intermediate position between undisturbed and gap specialists led to a peak of rarefied richness and diversity at intermediate disturbance levels. A diverse set of species differing widely in requirements and recruitment strategies forms the initial post-disturbance cohort, thus lending a high resilience towards wind disturbances at the community level.


Subject(s)
Biodiversity , Forests , Spacecraft , Trees/physiology , Wind , Brazil
SELECTION OF CITATIONS
SEARCH DETAIL
...