Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 62017 10 16.
Article in English | MEDLINE | ID: mdl-29035697

ABSTRACT

The underground environment imposes unique demands on life that have led subterranean species to evolve specialized traits, many of which evolved convergently. We studied convergence in evolutionary rate in subterranean mammals in order to associate phenotypic evolution with specific genetic regions. We identified a strong excess of vision- and skin-related genes that changed at accelerated rates in the subterranean environment due to relaxed constraint and adaptive evolution. We also demonstrate that ocular-specific transcriptional enhancers were convergently accelerated, whereas enhancers active outside the eye were not. Furthermore, several uncharacterized genes and regulatory sequences demonstrated convergence and thus constitute novel candidate sequences for congenital ocular disorders. The strong evidence of convergence in these species indicates that evolution in this environment is recurrent and predictable and can be used to gain insights into phenotype-genotype relationships.


Subject(s)
Adaptation, Biological , Biological Evolution , Ecosystem , Eye , Mammals , Ocular Physiological Phenomena , Animals
2.
Mol Biol Evol ; 33(9): 2182-92, 2016 09.
Article in English | MEDLINE | ID: mdl-27329977

ABSTRACT

Mammal species have made the transition to the marine environment several times, and their lineages represent one of the classical examples of convergent evolution in morphological and physiological traits. Nevertheless, the genetic mechanisms of their phenotypic transition are poorly understood, and investigations into convergence at the molecular level have been inconclusive. While past studies have searched for convergent changes at specific amino acid sites, we propose an alternative strategy to identify those genes that experienced convergent changes in their selective pressures, visible as changes in evolutionary rate specifically in the marine lineages. We present evidence of widespread convergence at the gene level by identifying parallel shifts in evolutionary rate during three independent episodes of mammalian adaptation to the marine environment. Hundreds of genes accelerated their evolutionary rates in all three marine mammal lineages during their transition to aquatic life. These marine-accelerated genes are highly enriched for pathways that control recognized functional adaptations in marine mammals, including muscle physiology, lipid-metabolism, sensory systems, and skin and connective tissue. The accelerations resulted from both adaptive evolution as seen in skin and lung genes, and loss of function as in gustatory and olfactory genes. In regard to sensory systems, this finding provides further evidence that reduced senses of taste and smell are ubiquitous in marine mammals. Our analysis demonstrates the feasibility of identifying genes underlying convergent organism-level characteristics on a genome-wide scale and without prior knowledge of adaptations, and provides a powerful approach for investigating the physiological functions of mammalian genes.


Subject(s)
Adaptation, Physiological/genetics , Caniformia/genetics , Cetacea/genetics , Gene-Environment Interaction , Sirenia/genetics , Animals , Aquatic Organisms/genetics , Biological Evolution , Evolution, Molecular , Mutation Rate , Phenotype , Phylogeny , Selection, Genetic
3.
BMC Cell Biol ; 17: 2, 2016 Jan 12.
Article in English | MEDLINE | ID: mdl-26754108

ABSTRACT

BACKGROUND: Animals are exposed to a wide range of environmental stresses that can cause potentially fatal cellular damage. The ability to survive the period of stress as well as to repair any damage incurred is essential for fitness. Exposure to 2 °C for 24 h or longer is rapidly fatal to the nematode Caenorhabditis elegans, but the process of recovery from a shorter, initially non-lethal, cold shock is poorly understood. RESULTS: We report that cold shock of less than 12-hour duration does not initially kill C. elegans, but these worms experience a progression of devastating phenotypes over the next 96 h that correlate with their eventual fate: successful recovery from the cold shock and survival, or failure to recover and death. Cold-shocked worms experience a marked loss of pigmentation, decrease in the size of their intestine and gonads, and disruption to the vulva. Those worms who will successfully recover from the cold shock regain their pigmentation and much of the integrity of their intestine and gonads. Those who will die do so with a distinct phenotype from worms dying during or immediately following cold shock, suggesting independent mechanisms. Worms lacking the G-protein coupled receptor FSHR-1 are resistant to acute death from longer cold shocks, and are more successful in their recovery from shorter sub-lethal cold shocks. CONCLUSIONS: We have defined two distinct phases of death associated with cold shock and described a progression of phenotypes that accompanies the course of recovery from that cold shock. The G-protein coupled receptor FSHR-1 antagonizes these novel processes of damage and recovery.


Subject(s)
Caenorhabditis elegans/physiology , Animals , Caenorhabditis elegans/chemistry , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Cold Temperature , Phenotype
4.
PLoS One ; 10(9): e0137403, 2015.
Article in English | MEDLINE | ID: mdl-26360906

ABSTRACT

The innate immune system's ability to sense an infection is critical so that it can rapidly respond if pathogenic microorganisms threaten the host, but otherwise maintain a quiescent baseline state to avoid causing damage to the host or to commensal microorganisms. One important mechanism for discriminating between pathogenic and non-pathogenic bacteria is the recognition of cellular damage caused by a pathogen during the course of infection. In Caenorhabditis elegans, the conserved G-protein coupled receptor FSHR-1 is an important constituent of the innate immune response. FSHR-1 activates the expression of antimicrobial infection response genes in infected worms and delays accumulation of the ingested pathogen Pseudomonas aeruginosa. FSHR-1 is central not only to the worm's survival of infection by multiple pathogens, but also to the worm's survival of xenobiotic cadmium and oxidative stresses. Infected worms produce reactive oxygen species to fight off the pathogens; FSHR-1 is required at the site of infection for the expression of detoxifying genes that protect the host from collateral damage caused by this defense response. Finally, the FSHR-1 pathway is important for the ability of worms to discriminate pathogenic from benign bacteria and subsequently initiate an aversive learning program that promotes selective pathogen avoidance.


Subject(s)
Host-Pathogen Interactions , Infections/genetics , Infections/metabolism , Oxidative Stress , Receptors, FSH/genetics , Receptors, FSH/metabolism , Animals , Disease Resistance/genetics , Disease Resistance/immunology , Gene Expression Regulation , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Infections/immunology , Infections/microbiology , Infections/mortality , Intestinal Mucosa/metabolism , Intestines/microbiology , Metals, Heavy/metabolism , Mutation , Oxidative Stress/genetics , Oxidative Stress/immunology , Stress, Physiological/genetics , Stress, Physiological/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...