Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Toxicol Chem ; 26(8): 1606-13, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17702332

ABSTRACT

Position-dependent concentrations of trichloroethylene and methyl-tert-butyl ether are considered for a 2.81-km section of the Aberjona River in Massachusetts, USA. This river flows through Woburn and Winchester (Massachusetts, USA), an area that is highly urbanized, has a long history of industrial activities dating to the early 1800s, and has gained national attention because of contamination from chlorinated solvent compounds in Woburn wells G and H. The river study section is in Winchester and begins approximately five stream kilometers downstream from the Woburn wells superfund site. Approximately 300 toxic release sites are documented in the watershed upstream from the terminus of the study section. The inflow to the river study section is considered one source of contamination. Other sources are the atmosphere, a tributary flow, and groundwater flows entering the river; the latter are categorized according to stream zone (1, 2, 3, etc.). Loss processes considered include outflows to groundwater and water-to-atmosphere transfer of volatile compounds. For both trichloroethylene and methyl-tert-butyl ether, degradation is neglected over the timescale of interest. Source apportionment fractions with assigned values alphainflow, alpha2, alpha3, etc. are tracked by a source apportionment model. The strengths of the groundwater and tributary sources serve as fitting parameters when minimizing a reduced least squares statistic between water concentrations measured during a synoptic study in July 2001 versus predictions from the model. The model fits provide strong evidence of substantial unknown groundwater sources of trichloroethylene and methyl-tert-butyl ether amounting to tens of grams per day of trichloroethylene and methyl-tert-butyl ether in the river along the study section. Modeling in a source apportionment manner can be useful to water quality managers allocating limited resources for remediation and source control.


Subject(s)
Cities , Industrial Waste , Organic Chemicals/analysis , Rivers/chemistry , Water Pollutants, Chemical/analysis , Least-Squares Analysis , Massachusetts , Methyl Ethers/analysis , Methyl Ethers/toxicity , Models, Chemical , Organic Chemicals/chemistry , Organic Chemicals/toxicity , Solvents/chemistry , Time Factors , Trichloroethylene/analysis , Trichloroethylene/toxicity , Volatilization , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/toxicity
2.
Environ Sci Technol ; 37(10): 2075-83, 2003 May 15.
Article in English | MEDLINE | ID: mdl-12785510

ABSTRACT

In eastern New England, high concentrations (greater than 10 microg/L) of arsenic occur in groundwater. Privately supplied drinking water from bedrock aquifers often has arsenic concentrations at levels of concern to human health, whereas drinking water from unconsolidated aquifers is least affected by arsenic contamination. Water from wells in metasedimentary bedrock units, primarily in Maine and New Hampshire, has the highest arsenic concentrations-nearly 30% of wells in these aquifers produce water with arsenic concentrations greater than 10 microg/L. Arsenic was also found at concentrations of 3-40 mg/kg in whole rock samples in these formations, suggesting a possible geologic source. Arsenic is most common in groundwater with high pH. High pH is related to groundwater age and possibly the presence of calcite in bedrock. Ion exchange in areas formerly inundated by seawater also may increase pH. Wells sampled twice during periods of 1-10 months have similar arsenic concentrations (slope = 0.89; r-squared = 0.97). On the basis of water-use information for the aquifers studied, about 103,000 people with private wells could have water supplies with arsenic at levels of concern (greater than 10 microg/L) for human health.


Subject(s)
Arsenic/analysis , Fresh Water/chemistry , Public Health , Water Pollutants, Chemical/analysis , Water Supply/standards , Geologic Sediments/chemistry , Humans , New England
SELECTION OF CITATIONS
SEARCH DETAIL
...