Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmacol Biochem Behav ; 108: 54-60, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23583441

ABSTRACT

A metabolite of the kynurenine pathway, kynurenic acid (KYNA) is an important endogenous neuromodulator and neuroprotector, that also exerts neurotropic effects following exogenous administration. In humans and animals, KYNA regulates affective and cognitive responses, acting mainly as an antagonist of glutamatergic receptors. However, the complete psychopharmacological profile of KYNA (which includes the activity of several neurotransmitter receptors) is poorly understood, and merit further studies. Aquatic models are rapidly emerging as useful tools in translational psychopharmacology research. Here, we exposed adult zebrafish (Danio rerio) to exogenous KYNA for 20 min, and assessed their behavior in the novel tank test. Exposure to KYNA (20 mg/L) in this paradigm evoked overt effects in fish, including decreased latency to enter the top half of the tank, increased number of top entries and longer top duration. In contrast, locomotor activity indices (swimming distance and velocity) were not affected by KYNA in this study. Overall, our results show KYNA has an anxiolytic-like pharmacological effect in zebrafish, and therefore strongly support the utility of zebrafish models in neurotropic drug screening, including drugs acting at central glutamatergic system. Robust phenotypic differences evoked by KYNA, revealed here using three-dimensional (3D) reconstructions of zebrafish locomotion in X, Y and time (Z) coordinates, confirm this notion, also demonstrating the value of 3D-based phenotyping approaches for high-throughput drug screening using zebrafish models.


Subject(s)
Behavior, Animal/drug effects , Excitatory Amino Acid Antagonists/pharmacology , Kynurenic Acid/pharmacology , Animals , Zebrafish
2.
Neurochem Int ; 62(6): 893-902, 2013 May.
Article in English | MEDLINE | ID: mdl-23485557

ABSTRACT

Serotonin syndrome (SS) is a serious life-threatening disorder associated with elevated brain serotonergic function. With the growing use of serotonergic drugs, SS affects a large portion of general population, becoming a major biomedical concern. SS-like behaviors have also been reported in animals following administration of serotonergic drugs. Although clinical and rodent studies have provided significant insight into the etiology of SS, its exact mechanisms and risk factors remain poorly understood. The need to develop more efficient psychotropic drugs also requires extensive high-throughput screening of novel compounds using sensitive in-vivo tests. The use of zebrafish (Danio rerio) in neuroscience research is rapidly expanding due to their homology to humans, robust behavioral and physiological responses, genetic tractability, and low costs. Here we discuss the potential of zebrafish models to study SS-related phenotypes induced by selected serotonergic drugs. Overall, zebrafish exposed to serotonergic agents and their combinations exhibit a characteristic top dwelling (surfacing behavior) and hypolocomotion which may represent potential markers of SS-like states in zebrafish. This behavior in zebrafish models positively correlates with brain concentrations of serotonin, suggesting the developing utility of zebrafish (and other aquatic models) for studying SS. Future research is expected to foster high-throughput screening of drug interactions, and pharmacogenetics studies identifying zebrafish mutations implicated in pathological SS-like states.


Subject(s)
Serotonin Agents/adverse effects , Serotonin Syndrome/physiopathology , Zebrafish/physiology , Animals , Behavior, Animal/drug effects , Disease Models, Animal , High-Throughput Screening Assays , Neurotoxicity Syndromes/physiopathology , Phenotype , Serotonin/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...