Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 5618, 2022 09 24.
Article in English | MEDLINE | ID: mdl-36153313

ABSTRACT

The chronology of the Paleocene-Eocene Thermal Maximum (PETM, ~56 Ma) remains disputed, hampering complete understanding of the possible trigger mechanisms of this event. Here we present an astrochronology for the PETM carbon isotope excursion from Howards Tract, Maryland a paleoshelf environment, on the mid-Atlantic Coastal Plain. Statistical evaluation of variations in calcium content and magnetic susceptibility indicates astronomical forcing was involved and the PETM onset lasted about 6 kyr. The astrochronology and Earth system modeling suggest that the PETM onset occurred at an extreme in precession during a maximum in eccentricity, thus favoring high temperatures, indicating that astronomical forcing could have played a role in triggering the event. Ca content data on the paleo-shelf, along with other marine records, support the notion that a carbonate saturation overshoot followed global ocean acidification during the PETM.


Subject(s)
Calcium , Seawater , Carbon Isotopes , Earth, Planet , Hydrogen-Ion Concentration
2.
Sci Adv ; 8(11): eabg1025, 2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35294237

ABSTRACT

The Paleocene-Eocene Thermal Maximum (PETM) is recognized by a major negative carbon isotope (δ13C) excursion (CIE) signifying an injection of isotopically light carbon into exogenic reservoirs, the mass, source, and tempo of which continue to be debated. Evidence of a transient precursor carbon release(s) has been identified in a few localities, although it remains equivocal whether there is a global signal. Here, we present foraminiferal δ13C records from a marine continental margin section, which reveal a 1.0 to 1.5‰ negative pre-onset excursion (POE), and concomitant rise in sea surface temperature of at least 2°C and a decline in ocean pH. The recovery of both δ13C and pH before the CIE onset and apparent absence of a POE in deep-sea records suggests a rapid (< ocean mixing time scales) carbon release, followed by recovery driven by deep-sea mixing. Carbon released during the POE is therefore likely more similar to ongoing anthropogenic emissions in mass and rate than the main CIE.

3.
Philos Trans A Math Phys Eng Sci ; 371(2001): 20120524, 2013 Oct 28.
Article in English | MEDLINE | ID: mdl-24043866

ABSTRACT

Global palaeoclimate reconstructions have been invaluable to our understanding of the causes and effects of climate change, but single-temperature representations of the oceanic mixed layer for data-model comparisons are outdated, and the time for a paradigm shift in marine palaeoclimate reconstruction is overdue. The new paradigm in marine palaeoclimate reconstruction stems the loss of valuable climate information and instead presents a holistic and nuanced interpretation of multi-dimensional oceanographic processes and responses. A wealth of environmental information is hidden within the US Geological Survey's Pliocene Research, Interpretation and Synoptic Mapping (PRISM) marine palaeoclimate reconstruction, and we introduce here a plan to incorporate all valuable climate data into the next generation of PRISM products. Beyond the global approach and focus, we plan to incorporate regional climate dynamics with emphasis on processes, integrating multiple environmental proxies wherever available in order to better characterize the mixed layer, and developing a finer time slice within the Mid-Piacenzian Age of the Pliocene, complemented by underused proxies that offer snapshots into environmental conditions. The result will be a proxy-rich, temporally nested, process-oriented approach in a digital format-a relational database with geographic information system capabilities comprising a three-dimensional grid representing the surface layer, with a plethora of data in each cell.

4.
Sci Rep ; 3: 2013, 2013.
Article in English | MEDLINE | ID: mdl-23774736

ABSTRACT

The mid-Piacenzian climate represents the most geologically recent interval of long-term average warmth relative to the last million years, and shares similarities with the climate projected for the end of the 21(st) century. As such, it represents a natural experiment from which we can gain insight into potential climate change impacts, enabling more informed policy decisions for mitigation and adaptation. Here, we present the first systematic comparison of Pliocene sea surface temperature (SST) between an ensemble of eight climate model simulations produced as part of PlioMIP (Pliocene Model Intercomparison Project) with the PRISM (Pliocene Research, Interpretation and Synoptic Mapping) Project mean annual SST field. Our results highlight key regional and dynamic situations where there is discord between the palaeoenvironmental reconstruction and the climate model simulations. These differences have led to improved strategies for both experimental design and temporal refinement of the palaeoenvironmental reconstruction.

5.
Ecol Lett ; 15(10): 1174-9, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22738438

ABSTRACT

High tropical and low polar biodiversity is one of the most fundamental patterns characterising marine ecosystems, and the influence of temperature on such marine latitudinal diversity gradients is increasingly well documented. However, the temporal stability of quantitative relationships among diversity, latitude and temperature is largely unknown. Herein we document marine zooplankton species diversity patterns at four time slices [modern, Last Glacial Maximum (18,000 years ago), last interglacial (120,000 years ago), and Pliocene (~3.3-3.0 million years ago)] and show that, although the diversity-latitude relationship has been dynamic, diversity-temperature relationships are remarkably constant over the past three million years. These results suggest that species diversity is rapidly reorganised as species' ranges respond to temperature change on ecological time scales, and that the ecological impact of future human-induced temperature change may be partly predictable from fossil and paleoclimatological records.


Subject(s)
Biodiversity , Temperature , Zooplankton , Animals , Climate Change , Ecology , Forecasting , Fossils , Oceans and Seas
6.
Philos Trans A Math Phys Eng Sci ; 367(1886): 69-84, 2009 Jan 13.
Article in English | MEDLINE | ID: mdl-18852090

ABSTRACT

The Mid-Pliocene is the most recent interval in the Earth's history to have experienced warming of the magnitude predicted for the second half of the twenty-first century and is, therefore, a possible analogue for future climate conditions. With continents basically in their current positions and atmospheric CO2 similar to early twenty-first century values, the cause of Mid-Pliocene warmth remains elusive. Understanding the behaviour of the North Atlantic Ocean during the Mid-Pliocene is integral to evaluating future climate scenarios owing to its role in deep water formation and its sensitivity to climate change. Under the framework of the Pliocene Research, Interpretation and Synoptic Mapping (PRISM) sea surface reconstruction, we synthesize Mid-Pliocene North Atlantic studies by PRISM members and others, describing each region of the North Atlantic in terms of palaeoceanography. We then relate Mid-Pliocene sea surface conditions to expectations of future warming. The results of the data and climate model comparisons suggest that the North Atlantic is more sensitive to climate change than is suggested by climate model simulations, raising the concern that estimates of future climate change are conservative.

7.
Philos Trans A Math Phys Eng Sci ; 367(1886): 109-25, 2009 Jan 13.
Article in English | MEDLINE | ID: mdl-18854303

ABSTRACT

The Mid-Pliocene is the most recent interval of sustained global warmth, which can be used to examine conditions predicted for the near future. An accurate spatial representation of the low-latitude Mid-Pliocene Pacific surface ocean is necessary to understand past climate change in the light of forecasts of future change. Mid-Pliocene sea surface temperature (SST) anomalies show a strong contrast between the western equatorial Pacific (WEP) and eastern equatorial Pacific (EEP) regardless of proxy (faunal, alkenone and Mg/Ca). All WEP sites show small differences from modern mean annual temperature, but all EEP sites show significant positive deviation from present-day temperatures by as much as 4.4 degrees C. Our reconstruction reflects SSTs similar to modern in the WEP, warmer than modern in the EEP and eastward extension of the WEP warm pool. The east-west equatorial Pacific SST gradient is decreased, but the pole to equator gradient does not change appreciably. We find it improbable that increased greenhouse gases (GHG) alone would cause such a heterogeneous warming and more likely that the cause of Mid-Pliocene warmth is a combination of several forcings including both increased meridional heat transport and increased GHG.

SELECTION OF CITATIONS
SEARCH DETAIL
...