Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Genes Dev ; 25(10): 1041-51, 2011 May 15.
Article in English | MEDLINE | ID: mdl-21576264

ABSTRACT

Tumor cells gain a survival/growth advantage by adapting their metabolism to respond to environmental stress, a process known as metabolic transformation. The best-known aspect of metabolic transformation is the Warburg effect, whereby cancer cells up-regulate glycolysis under aerobic conditions. However, other mechanisms mediating metabolic transformation remain undefined. Here we report that carnitine palmitoyltransferase 1C (CPT1C), a brain-specific metabolic enzyme, may participate in metabolic transformation. CPT1C expression correlates inversely with mammalian target of rapamycin (mTOR) pathway activation, contributes to rapamycin resistance in murine primary tumors, and is frequently up-regulated in human lung tumors. Tumor cells constitutively expressing CPT1C show increased fatty acid (FA) oxidation, ATP production, and resistance to glucose deprivation or hypoxia. Conversely, cancer cells lacking CPT1C produce less ATP and are more sensitive to metabolic stress. CPT1C depletion via siRNA suppresses xenograft tumor growth and metformin responsiveness in vivo. CPT1C can be induced by hypoxia or glucose deprivation and is regulated by AMPKα. Cpt1c-deficient murine embryonic stem (ES) cells show sensitivity to hypoxia and glucose deprivation and altered FA homeostasis. Our results indicate that cells can use a novel mechanism involving CPT1C and FA metabolism to protect against metabolic stress. CPT1C may thus be a new therapeutic target for the treatment of hypoxic tumors.


Subject(s)
Carnitine O-Palmitoyltransferase/metabolism , Stress, Physiological/physiology , AMP-Activated Protein Kinases/metabolism , Adenosine Triphosphate/metabolism , Animals , Apoptosis/physiology , Carnitine O-Palmitoyltransferase/deficiency , Carnitine O-Palmitoyltransferase/genetics , Cell Line, Tumor , Cell Proliferation , Cell Survival/genetics , Cells, Cultured , Drug Resistance, Neoplasm/genetics , Embryonic Stem Cells/enzymology , Gene Expression Regulation, Neoplastic , HCT116 Cells , Humans , Hypoxia/pathology , Lung Neoplasms/enzymology , Lung Neoplasms/pathology , Mice , RNA, Messenger/metabolism , Reproducibility of Results , Stress, Physiological/genetics , TOR Serine-Threonine Kinases/metabolism , Transplantation, Heterologous , Up-Regulation
2.
Curr Oncol Rep ; 13(2): 103-11, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21318618

ABSTRACT

The vascular endothelial growth factor (VEGF) signaling pathway appears to be the dominant pathway involved in tumor angiogenesis, providing a rationale for targeting the VEGF receptors (VEGFR-1, -2, and -3) in the treatment of cancers. In particular, VEGF signaling is thought to be important in renal cell carcinoma (RCC) because of the deregulation of the pathway through nearly uniform loss of the von Hippel Lindau protein. The tyrosine kinase inhibitors (TKIs) sorafenib, sunitinib, and pazopanib are approved by the US Food and Drug Administration for the treatment of advanced RCC; however, these multitargeted agents inhibit a wide range of kinase targets in addition to the VEGFRs, resulting in a range of adverse effects unrelated to efficient VEGF blockade. This article reviews recent advances in the development of the second-generation VEGFR TKIs, including the more selective VEGFR TKIs tivozanib and axitinib, and focuses on the potential benefits of novel inhibitors with improved potency and selectivity.


Subject(s)
Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Receptors, Vascular Endothelial Growth Factor/antagonists & inhibitors , Antineoplastic Agents/adverse effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/enzymology , Humans , Kidney Neoplasms/drug therapy , Kidney Neoplasms/enzymology , Protein Kinase Inhibitors/adverse effects , Receptors, Vascular Endothelial Growth Factor/metabolism
3.
Nat Biotechnol ; 28(1): 71-8, 2010 Jan.
Article in English | MEDLINE | ID: mdl-20023657

ABSTRACT

To recapitulate the stochastic nature of human cancer development, we have devised a strategy for generating mouse tumor models that involves stepwise genetic manipulation of embryonic stem (ES) cells and chimera generation. Tumors in the chimeric animals develop from engineered cells in the context of normal tissue. Adenocarcinomas arising in an allelic series of lung cancer models containing HER2 (also known as ERBB2), KRAS or EGFR oncogenes exhibit features of advanced malignancies. Treatment of EGFR(L858R) and KRAS(G12V) chimeric models with an EGFR inhibitor resulted in near complete tumor regression and no response to the treatment, respectively, accurately reflecting previous clinical observations. Transcriptome and immunohistochemical analyses reveal that PI3K pathway activation is unique to ERBB family tumors whereas KRAS-driven tumors show activation of the JNK/SAP pathway, suggesting points of therapeutic intervention for this difficult-to-treat tumor category.


Subject(s)
Adenocarcinoma/metabolism , Chimera/metabolism , ErbB Receptors/metabolism , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Proto-Oncogene Proteins p21(ras)/metabolism , Signal Transduction , Adenocarcinoma/pathology , Animals , Disease Models, Animal , Embryonic Stem Cells/drug effects , Embryonic Stem Cells/metabolism , Mice , Mice, Transgenic , Mutation/genetics , Phenotype , Piperazines/pharmacology , Quinazolines/pharmacology , Respiratory Insufficiency/metabolism , Respiratory Insufficiency/pathology , Signal Transduction/drug effects
4.
Cancer Res ; 69(23): 8949-57, 2009 Dec 01.
Article in English | MEDLINE | ID: mdl-19903844

ABSTRACT

Notch pathway signaling plays a fundamental role in normal biological processes and is frequently deregulated in many cancers. Although several hypotheses regarding cancer subpopulations most likely to respond to therapies targeting the Notch pathway have been proposed, clinical utility of these predictive markers has not been shown. To understand the molecular basis of gamma-secretase inhibitor (GSI) sensitivity in breast cancer, we undertook an unbiased, de novo responder identification study using a novel genetically engineered in vivo breast cancer model. We show that tumors arising from this model are heterogeneous on the levels of gene expression, histopathology, growth rate, expression of Notch pathway markers, and response to GSI treatment. In addition, GSI treatment of this model was associated with inhibition of Hes1 and proliferation markers, indicating that GSI treatment inhibits Notch signaling. We then identified a pretreatment gene expression signature comprising 768 genes that is significantly associated with in vivo GSI efficacy across 99 tumor lines. Pathway analysis showed that the GSI responder signature is enriched for Notch pathway components and inflammation/immune-related genes. These data show the power of this novel in vivo model system for the discovery of biomarkers predictive of response to targeted therapies, and provide a basis for the identification of human breast cancers most likely to be sensitive to GSI treatment.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Cyclic S-Oxides/administration & dosage , Enzyme Inhibitors/administration & dosage , Mammary Neoplasms, Experimental/drug therapy , Mammary Neoplasms, Experimental/enzymology , Thiadiazoles/administration & dosage , Animals , Cell Growth Processes/drug effects , Drug Administration Schedule , Gene Regulatory Networks , Humans , Mammary Neoplasms, Experimental/genetics , Mammary Neoplasms, Experimental/pathology , Mice , Mice, Inbred C57BL , Mice, Transgenic
6.
Proc Natl Acad Sci U S A ; 106(17): 7022-7, 2009 Apr 28.
Article in English | MEDLINE | ID: mdl-19369208

ABSTRACT

Breast cancer development is a complex pathobiological process involving sequential genetic alterations in normal epithelial cells that results in uncontrolled growth in a permissive microenvironment. Accordingly, physiologically relevant models of human breast cancer that recapitulate these events are needed to study cancer biology and evaluate therapeutic agents. Here, we report the generation and utilization of the human breast cancer in mouse (HIM) model, which is composed of genetically engineered primary human breast epithelial organoids and activated human breast stromal cells. By using this approach, we have defined key genetic events required to drive the development of human preneoplastic lesions as well as invasive adenocarcinomas that are histologically similar to those in patients. Tumor development in the HIM model proceeds through defined histological stages of hyperplasia, DCIS to invasive carcinoma. Moreover, HIM tumors display characteristic responses to targeted therapies, such as HER2 inhibitors, further validating the utility of these models in preclinical compound testing. The HIM model is an experimentally tractable human in vivo system that holds great potential for advancing our basic understanding of cancer biology and for the discovery and testing of targeted therapies.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology , Animals , Apoptosis/drug effects , Breast Neoplasms/metabolism , Cell Transformation, Neoplastic/metabolism , Cyclin D1/metabolism , Disease Models, Animal , Disease Progression , Gene Expression Regulation, Neoplastic , Humans , Mice , Neoplasm Invasiveness , Phosphatidylinositol 3-Kinases/metabolism , RNA Interference , Receptor, ErbB-2/antagonists & inhibitors , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Simian virus 40/genetics , Simian virus 40/metabolism , Telomerase/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Xenograft Model Antitumor Assays , ras Proteins/genetics , ras Proteins/metabolism
7.
Curr Biol ; 13(8): 698-704, 2003 Apr 15.
Article in English | MEDLINE | ID: mdl-12699629

ABSTRACT

Eukaryotic telomerase contains a telomerase reverse transcriptase (TERT) and an RNA template component that are essential for telomerase catalytic activity and several other telomerase-associated factors of which only a few appear to be integral enzyme components [1-3]. The first essential telomerase protein identified was S. cerevisiae Est1p, whose deletion leads to ever-shorter telomeres despite the persistence of telomerase activity [4-6]. Extensive genetic and biochemical data show that Est1p, via its interaction with the telomerase RNA and telomere end DNA binding complex Cdc13p/Stn1p/Ten1p, promotes the ability of telomerase to elongate telomeres in vivo [7-22]. The characterization of Est1p homologs outside of yeast has not been documented. We report the characterization of two putative human homologs of Est1p, hEST1A and hEST1B. Both proteins specifically associated with telomerase activity in human cell extracts and bound hTERT in rabbit reticulocyte lysates independently of the telomerase RNA. Overproduction of hEST1A cooperated with hTERT to lengthen telomeres, an effect that was specific to cells containing telomerase activity. Like Est1p, hEST1A (but not hEST1B) exhibited a single-stranded telomere DNA binding activity. These results suggest that the telomerase-associated factor Est1p is evolutionarily conserved in humans.


Subject(s)
Evolution, Molecular , Saccharomyces cerevisiae Proteins/genetics , Telomerase/genetics , Blotting, Western , Cell Extracts/chemistry , DNA Probes , DNA-Binding Proteins , Electrophoretic Mobility Shift Assay , Humans , Precipitin Tests , Sequence Alignment , Telomerase/metabolism
8.
Proc Natl Acad Sci U S A ; 99(6): 3597-602, 2002 Mar 19.
Article in English | MEDLINE | ID: mdl-11904422

ABSTRACT

Prolonged growth of murine embryonic stem (ES) cells lacking the telomerase reverse transcriptase, mTert, results in a loss of telomere DNA and an increased incidence of end-to-end fusions and aneuploidy. Furthermore, loss of only one copy of mTert also results in telomere shortening intermediate between wild-type (wt) and mTert-null ES cells [Liu, Y., Snow, B. E., Hande, M. P., Yeung, D., Erdmann, N. J., Wakeham, A., Itie, A., Siderovski, D. P., Lansdorp, P. M., Robinson, M. O. & Harrington, L. (2000) Curr. Biol. 10, 1459-1462]. Unexpectedly, although average telomere length in mTert(+/-) ES cells declined to a similar level as mTert-null ES cells, mTert(+/-) ES cell lines retained a minimal telomeric DNA signal at all chromosome ends. Consequently, no end-to-end fusions and genome instability were observed in the latest passages of mTert(+/-) ES cell lines. These data uncover a functional distinction between the dosage-dependent function of telomerase in average telomere-length maintenance and the selective maintenance of critically short telomeres in cells heterozygous for mTert. In normal and tumor cells, we suggest that telomerase activity insufficient to maintain a given average telomere length may, nonetheless, provide a protective advantage from end-to-end fusion and genome instability.


Subject(s)
Heterozygote , Telomerase/genetics , Telomerase/metabolism , Telomere/enzymology , Telomere/metabolism , Animals , Cells, Cultured , Chromosome Aberrations , DNA-Binding Proteins , Gene Deletion , Genome , In Situ Hybridization, Fluorescence , Metaphase/genetics , Mice , Protein Transport , Stem Cells/cytology , Stem Cells/enzymology , Stem Cells/metabolism , Telomere/genetics
9.
Oncogene ; 21(4): 592-7, 2002 Jan 21.
Article in English | MEDLINE | ID: mdl-11850784

ABSTRACT

The molecular cloning of telomerase and telomere components has enabled the analysis and precise manipulation of processes that regulate telomere length maintenance. In mammalian cells and in other organisms, we now recognize that disruption of telomere integrity via any one of a number of perturbations induces chromosome instability and the activation of DNA damage responses. Thus, telomere dysfunction may represent a physiological trigger of the DNA damage or apoptotic response in an analogous fashion to other genotoxic insults that introduce chromosome breaks. Initial studies in mice lacking the murine telomerase RNA and in cells expressing a dominant negative version of the telomere binding protein TRF2 revealed a strong p53-dependent response to telomere dysfunction. Yet, telomere dysfunction exhibits p53-independent effects as well, an observation supported by p53-independent responses to telomere dysfunction in p53 mutant human tumor cell lines and mouse cells. As most tumors are compromised for p53 function, examination of this p53-independent response warrants closer attention. A better understanding of this p53-independent response may prove critical for determining the ultimate utility of telomerase inhibitors in the clinic. This review will summarize our current understanding of the molecular responses to telomere dysfunction in mammalian cells.


Subject(s)
Telomere/physiology , Animals , Apoptosis , Cell Transformation, Neoplastic , DNA Damage , Humans , Mice , Models, Genetic , RNA/genetics , RNA/physiology , Signal Transduction , Telomerase/genetics , Telomerase/physiology , Telomere/genetics , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...