Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Air Waste Manag Assoc ; 57(9): 1014-23, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17912920

ABSTRACT

Thermally derived carbon fractions including organic carbon (OC) and elemental carbon (EC) have been reported for the U.S. Interagency Monitoring of PROtected Visual Environments (IMPROVE) network since 1987 and have been found useful in source apportionment studies and to evaluate quartz-fiber filter adsorption of organic vapors. The IMPROVE_A temperature protocol defines temperature plateaus for thermally derived carbon fractions of 140 degrees C for OC1, 280 degrees C for OC2, 480 degrees C for OC3, and 580 degrees C for OC4 in a helium (He) carrier gas and 580 degrees C for EC1, 740 degrees C for EC2, and 840 degrees C for EC3 in a 98% He/2% oxygen (O2) carrier gas. These temperatures differ from those used previously because new hardware used for the IMPROVE thermal/optical reflectance (IMPROVE_TOR) protocol better represents the sample temperature than did the old hardware. A newly developed temperature calibration method demonstrates that these temperatures better represent sample temperatures in the older units used to quantify IMPROVE carbon fractions from 1987 through 2004. Only the thermal fractions are affected by changes in temperature. The OC and EC by TOR are insensitive to the change in temperature protocol, and therefore the long-term consistency of the IMPROVE database is conserved. A method to detect small quantities of O2 in the pure He carrier gas shows that O2 levels above 100 ppmv also affect the comparability of thermal carbon fractions but have little effect on the IMPROVE_TOR split between OC and EC.


Subject(s)
Carbon/analysis , Environmental Monitoring , Environmental Pollution/analysis , Temperature , Atmosphere/chemistry , Calibration , Carbon/chemistry , Databases, Factual , Oxygen/analysis
2.
J Air Waste Manag Assoc ; 56(4): 398-410, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16681205

ABSTRACT

Particle light scattering (Bsp) from nephelometers and fine particulate matter (PM2.5) mass determined by filter samplers are compared for summer and winter at 35 locations in and around California's San Joaquin Valley from December 2, 1999 to February 3, 2001. The relationship is described using particle mass scattering efficiency (sigmasp) derived from linear regression of Bsp on PM2.5 that can be applied to estimated PM2.5 from nephelometer data within the 24-hr filter sampling periods and between the every-6th-day sampling frequency. An average of sigmaSp = 4.9 m2/g was found for all of the sites and seasons; however, sigmasp averaged by site type and season provided better PM2.5 estimates. On average, the sigmasp was lower in summer than winter, consistent with lower relative humidities, lower fractions of hygroscopic ammonium nitrate, and higher contributions from fugitive dust. Winter average sigmasp were similar at non-source-dominated sites, ranging from 4.8 m2/g to 5.9 m2/g. The sigmasp was 2.3 m2/g at the roadside, 3.7 m2/g at a dairy farm, and 4.1 m2/g in the Kern County oilfields. Comparison of Bsp from nephelometers with and without a PM2.5 inlet at the Fresno Supersite showed that coarse particles contributed minor amounts to light scattering. This was confirmed by poorer correlations between Bsp and coarse particulate matter measured during a fall sampling period.


Subject(s)
Air Pollutants, Occupational/analysis , Environmental Monitoring/methods , Scattering, Radiation , California , Light , Seasons
3.
J Air Waste Manag Assoc ; 54(6): 711-26, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15242151

ABSTRACT

During the spring and summer of 2000, 2001, and 2002, gaseous and particulate matter (PM) fuel-based emission factors for approximately 150,000 low-tailpipe, individual vehicles in the Las Vegas, NV, area were measured via on-road remote sensing. For the gaseous pollutants (carbon monoxide, hydrocarbons, and nitrogen oxide), a commercial vehicle emissions remote sensing system (VERSS) was used. The PM emissions were determined using a Lidar-based VERSS. Emission distributions and their shapes were analyzed and compared with previous studies. The large skewness of the distributions is evident for both gaseous pollutants and PM and has important implications for emission reduction policies, because the majority of emissions are attributed to a small fraction of vehicles. Results of this Las Vegas study and studies at other geographical locations were compared. The gaseous pollutants were found to be close to those measured by VERSS in other U.S. cities. The PM emission factors for spark ignition and diesel vehicles are in the range of previous tunnel and dynamometer studies.


Subject(s)
Air Pollutants/analysis , Air Pollution/analysis , Nevada , Vehicle Emissions/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...