Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Invest Ophthalmol Vis Sci ; 64(15): 1, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38038619

ABSTRACT

Purpose: Interleukin-6 (IL-6) is implicated in the pathology of diabetic retinopathy (DR). IL-6 trans-signaling via soluble IL-6 receptor (IL-6R) is primarily responsible for its pro-inflammatory functions, whereas cis-signaling via membrane-bound IL-6R is anti-inflammatory. Using a Müller-glial-cell-specific Il6ra-/- mouse, we examined how loss of IL-6 cis-signaling in Müller glial cells (MGCs) affected retinal thinning and electroretinography (ERG) response over 9 months of diabetes. Methods: Diabetes was induced in wildtype and knockout mice with streptozotocin (40 mg/kg, daily for 5 days). Spectral domain optical coherence tomography (SD-OCT), ERG, and fundoscopy/fluorescein angiography (FA) were assessed at 2, 6, and 9 months of diabetes. MGCs and bipolar neurons were examined in retinal tissue sections by immunofluorescence. Results: Diabetic MGC Il6ra-/- mice had significantly thinner retinas than diabetic wildtype mice at 2 (-7.6 µm), 6 (-12.0 µm), and 9 months (-5.0 µm) of diabetes, as well as significant thinning of the inner nuclear layer (INL). Diabetic MGC Il6ra-/- mice also showed a reduction in scotopic B-wave amplitude and B-wave/A-wave ratio earlier than wildtype diabetic mice. In retinal sections, we found a decrease in bipolar neuronal marker PKCα only in diabetic MGC Il6ra-/- mice, which was significantly lower than both controls and diabetic wildtype mice. Glutamine synthetase, a Müller cell marker, was reduced in both wildtype and MGC Il6ra-/- diabetic mice compared to their respective controls. Conclusions: IL-6 cis-signaling in MGCs contributes to maintenance of the INL in diabetes, and loss of the IL-6 receptor reduces MGC-mediated neuroprotection of bipolar neurons in the diabetic retina.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Retinopathy , Receptors, Interleukin-6 , Animals , Mice , Diabetes Mellitus, Experimental/pathology , Ependymoglial Cells/pathology , Interleukin-6 , Mice, Knockout , Receptors, Interleukin-6/genetics , Retina
2.
Front Oncol ; 9: 72, 2019.
Article in English | MEDLINE | ID: mdl-30863721

ABSTRACT

Renal cell carcinomas (RCC) are heterogeneous and can be further classified into three major subtypes including clear cell, papillary and chromophobe. Signal transducer and activator of transcription 3 (STAT3) is commonly hyperactive in many cancers and is associated with cancer cell proliferation, invasion, migration, and angiogenesis. In renal cell carcinoma, increased STAT3 activation is associated with increased metastasis and worse survival outcomes, but clinical trials targeting the STAT3 signaling pathway have shown varying levels of success in different RCC subtypes. Using RNA-seq data from The Cancer Genome Atlas (TCGA), we compared expression of 32 STAT3 regulated genes in 3 RCC subtypes. Our results indicate that STAT3 activation plays the most significant role in clear cell RCC relative to the other subtypes, as half of the evaluated genes were upregulated in this subtype. MMP9, BIRC5, and BCL2 were upregulated and FOS was downregulated in all three subtypes. Several genes including VEGFA, VIM, MYC, ITGB4, ICAM1, MMP1, CCND1, STMN1, TWIST1, and PIM2 had variable expression in RCC subtypes and are potential therapeutic targets for personalized medicine.

3.
Protein Eng Des Sel ; 30(2): 105-111, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27980121

ABSTRACT

Perforin is a pore-forming, immune protein that functions to deliver an apoptotic cocktail of proteins into a target pathogen. Recent studies of the bacterial cholesterol-dependent cytolysins (CDCs) have provided a model for perforin's pore-forming mechanism. Both perforin and CDC family members share a conserved ß-sheet flanked by two clusters of α-helices. Within the CDCs, these helices refold into two transmembrane ß-hairpins, TMH1 and TMH2. Based upon structural conservation and electron microscopy imaging, the analogous helices within perforin are predicted to also be membrane inserting; however, these regions are approximately twice the length of the CDC TMHs. To test the membrane-insertion potential of one of these regions, chimeras were created using a well-characterized CDC, perfringolysin-O (PFO), as the backbone of these constructs. PFO's TMH2 region was replaced with perforin's corresponding helical region. Although hemolytic activity was observed, the chimera was poorly soluble. A second chimera contained the same region truncated to match the length of the PFO TMH2 region. The truncated chimera demonstrated improved solubility, significant hemolytic activity and the ability to form pores characteristic of those created by PFO. These results provide the first evidence that perforin's helices function as TMHs and more importantly narrows the residues responsible for membrane insertion.


Subject(s)
Cell Membrane/metabolism , Cholesterol/metabolism , Perforin/chemistry , Perforin/metabolism , Recombinant Fusion Proteins/metabolism , Amino Acid Sequence , Animals , Hemolysis/drug effects , Humans , Mice , Models, Molecular , Perforin/genetics , Perforin/pharmacology , Porosity , Protein Structure, Secondary , Rabbits , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/pharmacology
4.
Biochem Mol Biol Educ ; 45(1): 60-68, 2017 Jan 02.
Article in English | MEDLINE | ID: mdl-27229266

ABSTRACT

The concepts of protein purification are often taught in undergraduate biology and biochemistry lectures and reinforced during laboratory exercises; however, very few reported activities allow students to directly gain experience using modern protein purification instruments, such as Fast Protein Liquid Chromatography (FPLC). This laboratory exercise uses size exclusion chromatography (SEC) and ion exchange (IEX) chromatography to separate a mixture of four different proteins. Students use an SEC chromatogram and corresponding SDS-PAGE gel to understand how protein conformations change under different conditions (i.e. native and non-native). Students explore strategies to separate co-eluting proteins by IEX chromatography. Using either cation or anion exchange, one protein is bound to the column while the other is collected in the flow-through. In this exercise, undergraduate students gain hands-on experience with experimental design, buffer and sample preparation, and implementation of instrumentation that is commonly used by experienced researchers while learning and applying the fundamental concepts of protein structure, protein purification, and SDS-PAGE. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(1):60-68, 2017.


Subject(s)
Biochemistry/education , Chromatography, Liquid/methods , Problem-Based Learning , Proteins/chemistry , Proteins/isolation & purification , Animals , Cattle , Chickens , Chromatography, Gel/methods , Electrophoresis, Polyacrylamide Gel/methods , Hemoglobins/chemistry , Hemoglobins/isolation & purification , Horses , Humans , Muramidase/chemistry , Muramidase/isolation & purification , Myoglobin/chemistry , Myoglobin/isolation & purification , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/isolation & purification
5.
Biochem Mol Biol Educ ; 43(5): 358-65, 2015.
Article in English | MEDLINE | ID: mdl-26153352

ABSTRACT

SDS-PAGE and western blotting are two commonly taught protein detection techniques in biochemistry and molecular biology laboratory classrooms. A pitfall associated with incorporating these techniques into the laboratory is the significant wait times that do not allow students to obtain timely results. The waiting associated with SDS-PAGE comes from staining and destaining, whereas with western blotting it is the times required for antibody incubations and the numerous wash steps. This laboratory exercise incorporates 2,2,2-trichloroethanol (TCE) into the SDS-PAGE gel allowing for visualization of migrated proteins in a matter of minutes, saving both the time and chemical waste associated with traditional Coomassie staining. Additionally, TCE staining does not affect protein transfer eliminating the requirement for duplicated gels for total protein and western analyses. Protein transfer can be confirmed immediately without the use of Ponceau S staining. Lastly, this western blot procedure has been further shortened by using an HRP-conjugated primary antibody, which eliminates the secondary antibody incubation and washes, and uses a colorimetric detection to allow for visualization by students without the need for specialized equipment.


Subject(s)
Blotting, Western/methods , Education/methods , Molecular Biology/education , Curriculum , Electrophoresis, Polyacrylamide Gel/methods , Ethylene Chlorohydrin/analogs & derivatives , Ethylene Chlorohydrin/chemistry , Horseradish Peroxidase/chemistry , Humans , Laboratories , Molecular Biology/methods , Students , Universities
SELECTION OF CITATIONS
SEARCH DETAIL
...