Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
PLoS One ; 15(10): e0239620, 2020.
Article in English | MEDLINE | ID: mdl-33125377

ABSTRACT

Flight morphological variations and its consequences on animal performance are common in winged insects. In the butterfly Heliconius charithonia, sex-related differences in the wing morphological design have been described resulting in differences in foraging behavior, daily flight distances and flight aerodynamics. It has been suggested that these differences should be reflected in the metabolic capacities and energetic budgets associated with flight in both sexes. In this study, we analyzed the relationship between wing morphological variation and metabolic performance, flight aerodynamics and energetic reserves in females and males of Heliconius charithonia over two years. The results confirm the presence of wing shape sexual dimorphism, but also show an unexpected sex-related annual variation in wing shape, mirrored in the metabolic condition (resting metabolic rate) of individuals. However, contrary to expectation, intersexual variations in wing shape are not related to differences between the sexes in terms of flight aerodynamics, flight metabolic rates, or energetic reserves (carbohydrates, lipids and proteins). Our results indicate a considerable plasticity in H. charithonia wing shape, which we suggest is determined by a trade-off between environmental pressures and reproductive restriction of each sex, maintaining an optimum flight design. Finally, similarities in metabolic rates between young and older males and females in both years may be a consequence of the ability of Heliconius species to feed on pollen.


Subject(s)
Butterflies/anatomy & histology , Butterflies/metabolism , Flight, Animal/physiology , Wings, Animal/anatomy & histology , Animals , Basal Metabolism , Biological Evolution , Biophysical Phenomena , Butterflies/physiology , Energy Metabolism , Female , Male , Mexico , Sex Characteristics , Wings, Animal/physiology
2.
Jpn J Infect Dis ; 70(1): 50-60, 2017 Jan 24.
Article in English | MEDLINE | ID: mdl-27169941

ABSTRACT

Enterotoxigenic Escherichia coli is the most common cause of diarrhea in children younger than 5 years in the developing world. We used 16S rRNA gene sequencing, the Biolog® system, and an Amplified Ribosomal DNA Restriction Analysis (ARDRA) to identify 69 enterobacteria isolated from the feces of healthy children up to 12 years old and 54 enterobacteria isolated from stool samples obtained from children up to 5 years old with diarrhea from Morelia, Michoacán, Mexico. In the diarrheic group, 18 isolates belonged to the enterotoxigenic pathotype, 1 isolate had both LT (heat labile toxin) gene and ST (heat stable toxin) gene, and 17 had the ST gene. The identity of most of the strains harboring the ST gene was E. coli, and 3 of the strains were identified as Morganella morganii. The ST toxin gene of one of the strains identified as M. morganii showed 100% identity with an ST toxin gene of E. coli. The ARDRA was a very useful tool to differentiate between E. coli and M. morganii. The phenotypic and genetic analyses of the isolates using the Biolog® system and Random Amplified Polymorphic DNA, respectively, showed physiological variation among the studied strains and genetic differences between subgroups.


Subject(s)
Diarrhea/microbiology , Enterotoxins/genetics , Escherichia coli/isolation & purification , Feces/microbiology , Healthy Volunteers , Molecular Typing , Morganella morganii/isolation & purification , Bacterial Typing Techniques , Child , Child, Preschool , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Enterotoxins/classification , Escherichia coli/classification , Escherichia coli/genetics , Female , Humans , Infant , Male , Mexico , Morganella morganii/classification , Morganella morganii/genetics , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
3.
Biotechnol Prog ; 32(3): 787-98, 2016 05.
Article in English | MEDLINE | ID: mdl-26821938

ABSTRACT

Using the ITS region and the gene tef1, 23 strains of the genus Trichoderma were identified as belonging to the species T. harzianum (n = 14), T. olivascens (n = 1), T. trixiae (n = 1), T. viridialbum (n = 1), T. tomentosum (n = 2), T. koningii (n = 1), T. atroviride (n = 1), T. viride (n = 1), and T. gamsii (n = 1). Strains expressing extracellular laccase activity were selected by decolorization/oxidation assays in solid media, using azo, anthraquinone, indigoid, and triphenylmethane dyes, and the phenolic substances tannic acid and guaiacol. No strain decolorized Direct Blue 71 or Chicago Blue 6B, but all of them weakly oxidized guaiacol, decolorized Methyl Orange, and efficiently oxidized tannic acid. Based in decolorization/oxidation assays, strains CMU-1 (T. harzianum), CMU-8 (T. atroviride), CMU-218 (T. viride), and CMU-221 (T. tomentosum) were selected for evaluating their extracellular laccase activity in liquid media. Strain CMU-8 showed no basal laccase activity, while strains CMU-1, CMU-218, and CMU-221 had a basal laccase activity of 1,313.88 mU/mL, 763.88 mU/mL, and 799.53 mU/mL, respectively. Addition of sorghum straw inhibited laccase activity in strain CMU-1 by 34%, relative to the basal culture, while strains CMU-8, CMU-21, and CMU-221 increased their laccase activity by 1,321.5%, 64%, and 47%, respectively. These results show that assayed phenolic substrates are good tools for selecting laccase producer strains in Trichoderma. These same assays indicate the potential use of studied strains for bioremediation processes. Straw laccase induction suggests that analyzed strains have potential for straw delignification in biopulping and other biotechnological applications. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:787-798, 2016.


Subject(s)
Laccase/metabolism , Trichoderma/metabolism , DNA, Fungal/genetics , Trichoderma/cytology , Trichoderma/genetics
SELECTION OF CITATIONS
SEARCH DETAIL