Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Magn Reson Med ; 91(3): 886-895, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38010083

ABSTRACT

PURPOSE: Application of highly selective editing RF pulses provides a means of minimizing co-editing of contaminants in J-difference MRS (MEGA), but it causes reduction in editing yield. We examined the flip angles (FAs) of narrow-band editing pulses to maximize the lactate edited signal with minimal co-editing of threonine. METHODS: The effect of editing-pulse FA on the editing performance was examined, with numerical and phantom analyses, for bandwidths of 17.6-300 Hz in MEGA-PRESS editing of lactate at 3T. The FA and envelope of 46 ms Gaussian editing pulses were tailored to maximize the lactate edited signal at 1.3 ppm and minimize co-editing of threonine. The optimized editing-pulse FA MEGA scheme was tested in brain tumor patients. RESULTS: Simulation and phantom data indicated that the optimum FA of MEGA editing pulses is progressively larger than 180° as the editing-pulse bandwidth decreases. For 46 ms long 17.6 Hz bandwidth Gaussian pulses and other given sequence parameters, the lactate edited signal was maximum at the first and second editing-pulse FAs of 241° and 249°, respectively. The edit-on and difference-edited lactate peak areas of the optimized FA MEGA were greater by 43% and 25% compared to the 180°-FA MEGA, respectively. In-vivo data confirmed the simulation and phantom results. The lesions of the brain tumor patients showed elevated lactate and physiological levels of threonine. CONCLUSION: The lactate MEGA editing yield is significantly increased with editing-pulse FA much larger than 180° when the editing-pulse bandwidth is comparable to the lactate quartet frequency width.


Subject(s)
Brain Neoplasms , Lactic Acid , Humans , Magnetic Resonance Spectroscopy/methods , Phantoms, Imaging , Brain Neoplasms/diagnostic imaging , Threonine
2.
Neuroimage ; 284: 120460, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37979894

ABSTRACT

BACKGROUND: Susceptibility-weighted imaging (SWI) has been extensively studied in the brain and in diseases of the central nervous system such as multiple sclerosis (MS) providing unique opportunities to visualize cerebral vasculature and disease-related pathology, including the central vein sign (CVS) and paramagnetic rim lesions (PRLs). However, similar studies evaluating SWI in the spinal cord of patients with MS remain severely limited. PURPOSE: Based on our previous findings of enlarged spinal vessels in MS compared to healthy controls (HCs), we developed high-field SWI acquisition and processing methods for the cervical spinal cord with application in people with MS (pwMS) and HCs. Here, we demonstrate the vascular variability between the two cohorts and unique MS lesion features in the cervical cord. METHODS: In this retrospective, exploratory pilot study conducted between March 2021 and March 2022, we scanned 12 HCs and 9 pwMS using an optimized non-contrast 2D T2*-weighted gradient echo sequence at 7 tesla. The overall appearance of the white and gray matter as well as tissue vasculature were compared between the two cohorts and areas of MS pathology in the patient group were assessed using both the magnitude and processed SWI images. RESULTS: We show improved visibility of vessels and more pronounced gray and white matter contrast in the MS group compared to HCs, hypointensities surrounding the cord in the MS cohort, and identify signal changes indicative of the CVS and paramagnetic rims in 66 % of pwMS with cervical spinal lesions. CONCLUSION: In this first study of SWI at 7T in the human spinal cord, SWI holds promise in advancing our understanding of disease processes in the cervical cord in MS.


Subject(s)
Cervical Cord , Multiple Sclerosis , Humans , Cervical Cord/diagnostic imaging , Cervical Cord/pathology , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology , Retrospective Studies , Pilot Projects , Spinal Cord/diagnostic imaging , Spinal Cord/pathology , Magnetic Resonance Imaging/methods
3.
Magn Reson Med ; 90(3): 852-862, 2023 09.
Article in English | MEDLINE | ID: mdl-37154389

ABSTRACT

PURPOSE: The need to detect and quantify brain lactate accurately by MRS has stimulated the development of editing sequences based on J coupling effects. In J-difference editing of lactate, threonine can be co-edited and it contaminates lactate estimates due to the spectral proximity of the coupling partners of their methyl protons. We therefore implemented narrow-band editing 180° pulses (E180) in MEGA-PRESS acquisitions to resolve separately the 1.3-ppm resonances of lactate and threonine. METHODS: Two 45.3-ms rectangular E180 pulses, which had negligible effects 0.15-ppm away from the carrier frequency, were implemented in a MEGA-PRESS sequence with TE 139 ms. Three acquisitions were designed to selectively edit lactate and threonine, in which the E180 pulses were tuned to 4.1 ppm, 4.25 ppm, and a frequency far off resonance. Editing performance was validated with numerical analyses and acquisitions from phantoms. The narrow-band E180 MEGA and another MEGA-PRESS sequence with broad-band E180 pulses were evaluated in six healthy subjects. RESULTS: The 45.3-ms E180 MEGA offered a difference-edited lactate signal with lower intensity and reduced contamination from threonine compared to the broad-band E180 MEGA. The 45.3 ms E180 pulse had MEGA editing effects over a frequency range larger than seen in the singlet-resonance inversion profile. Lactate and threonine in healthy brain were both estimated to be 0.4 ± 0.1 mM, with reference to N-acetylaspartate at 12 mM. CONCLUSION: Narrow-band E180 MEGA editing minimizes threonine contamination of lactate spectra and may improve the ability to detect modest changes in lactate levels.


Subject(s)
Brain , Lactic Acid , Humans , Lactic Acid/analysis , Magnetic Resonance Spectroscopy , Brain/diagnostic imaging , Phantoms, Imaging , Threonine
4.
Magn Reson Imaging ; 99: 58-66, 2023 06.
Article in English | MEDLINE | ID: mdl-36764629

ABSTRACT

INTRODUCTION: Simultaneous mapping of triglyceride (TAG) saturation and tissue water relaxation may improve the characterization of the structure and function of anatomies with significant adipose tissue. While several groups have demonstrated in vivo TAG saturation imaging using MRI, joint mapping of relaxation and TAG saturation is understudied. Such mappings may avoid bias from physiological motion, if they can be done within a single breath-hold, and also account for static and applied magnetic field heterogeneity. METHODS: We propose a transient-state/MR fingerprinting single breath-hold sequence at 3 T, a low-rank reconstruction, and a parameter estimation pipeline that jointly estimates the number of double bonds (NDB), number of methylene interrupted double bonds (NMIDB), and tissue water T1, while accounting for non-ideal radiofrequency transmit scaling and off-resonance effects. We test the proposed method in simulations, in phantom against MR spectroscopy (MRS), and in vivo regions in and around high fat fraction (FF) periclavicular adipose tissue. Partial volume and multi-peak transverse relaxation effects are explored. RESULTS: The simulation results demonstrate accurate NDB, NMIDB, and water T1 estimates across a range of NDB, NMIDB, and T1 values. In phantoms, the proposed method's estimates of NDB and NMIDB correlate with those from MR spectroscopy (Pearson correlation ≥0.98), while the water T1 estimates are concordant with a standard phantom. The NDB and NMIDB are sensitive to partial volumes of water, showing increasing bias at FF < 40%. This bias is found to be due to noise and transverse relaxation effects. The in vivo periclavicular adipose tissue has high FF (>90%). The adipose tissue NDB and NMIDB, and muscle T1 estimates are comparable to those reported in the literature. CONCLUSION: Robust estimation of NDB, NMIDB at high FF and water T1 across a broad range of FFs are feasible using the proposed methods. Further reduction of noise and model bias are needed to employ the proposed technique in low FF anatomies and pathologies.


Subject(s)
Breath Holding , Water , Humans , Triglycerides , Feasibility Studies , Adipose Tissue , Magnetic Resonance Imaging/methods , Obesity , Phantoms, Imaging
5.
Magn Reson Med ; 89(3): 951-963, 2023 03.
Article in English | MEDLINE | ID: mdl-36321560

ABSTRACT

PURPOSE: The goal of this work is to present the implementation of 3D spiral high-resolution MPRAGE and to demonstrate that SNR and scan efficiency increase with the increment of readout time. THEORY: Simplified signal equations for MPRAGE indicate that the T1 contrast can be kept approximately the same by a simple relationship between the flip angle and the TR. Furthermore, if T1 contrast remains the same, image SNR depends on the square root of the product of the total scan time and the readout time. METHODS: MPRAGE spiral sequences were implemented with distributed spirals and spiral staircase on 3 Tesla scanners. Brain images of three volunteers were acquired with different readout times. Spiral images were processed with a joint water-fat separation and deblurring algorithm and compared to Cartesian images. Pure noise data sets were also acquired for SNR evaluation. RESULTS: Consistent T1 weighting can be achieved with various spiral readout lengths, and between spiral MPRAGE imaging and the traditional Cartesian MPRAGE imaging. Noise performance analysis demonstrates higher SNR efficiency of spiral MPRAGE imaging with matched T1 contrast compared to the Cartesian reference imaging. CONCLUSION: Fast, high SNR MPRAGE imaging is feasible with long readout spiral trajectories.


Subject(s)
Imaging, Three-Dimensional , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Imaging, Three-Dimensional/methods , Brain/diagnostic imaging , Water , Algorithms
6.
Magn Reson Imaging ; 89: 24-32, 2022 06.
Article in English | MEDLINE | ID: mdl-35257801

ABSTRACT

Axial gradient echo T2*-weighed MRI of the spine is a valuable diagnostic tool with several advantages over axial T2-weighted TSE MRI, but it suffers from a low signal-to-noise ratio (SNR) and inconsistent image quality. This work investigates the potential of spiral MRI to reduce artifacts and produce improved SNR and image quality in axial T2*-weighted gradient echo MRI of the spine of pediatric patients. For the purposes of image quality evaluation, 15 pediatric patients were recruited among those scheduled for a routine spine or brain exam at 1.5 T. Pediatric spine images were rated by three pediatric neuroradiologists on a subjective scale of 1-5 using four image quality criteria. Image quality scores were evaluated using non-parametric Wilcoxon signed-rank testing and a mixed effects logistic regression model. Significant differences were found in the image quality scores in favor of spiral MRI. The odds of spiral images receiving an overall image quality score higher than 3 was 16.3 times greater than the odds of Cartesian images receiving a score higher than 3 (p < 0.001, 95% CI of 4.6 to 86) as calculated using a mixed effects logistic regression model. A quantitative comparison was also performed on a single volunteer to illustrate the SNR benefit of spiral MRI. In conclusion, spiral MRI was found to provide equal or better image quality than Cartesian MRI in axial T2*-weighted gradient echo MRI in the spine of a small cohort of pediatric patients at 1.5 T.


Subject(s)
Magnetic Resonance Imaging , Spine , Artifacts , Brain/diagnostic imaging , Child , Humans , Magnetic Resonance Imaging/methods , Signal-To-Noise Ratio , Spine/diagnostic imaging
7.
Magn Reson Med ; 86(6): 3082-3095, 2021 12.
Article in English | MEDLINE | ID: mdl-34288112

ABSTRACT

PURPOSE: The purpose of this study was to develop a spiral-based combined spin- and gradient-echo (spiral-SAGE) method for simultaneous dynamic contrast-enhanced (DCE-MRI) and dynamic susceptibility contrast MRI (DSC-MRI). METHODS: Using this sequence, we obtained gradient-echo TEs of 1.69 and 26 ms, a SE TE of 87.72 ms, with a TR of 1663 ms. Using an iterative SENSE reconstruction followed by deblurring, spiral-induced image artifacts were minimized. Healthy volunteer images are shown to demonstrate image quality using the optimized reconstruction, as well as for comparison with EPI-based SAGE. A bioreactor phantom was used to compare dynamic-contrast time courses with both spiral-SAGE and EPI-SAGE. A proof-of-concept cohort of patients with brain tumors shows the range of hemodynamic maps available using spiral-SAGE. RESULTS: Comparison of spiral-SAGE images with conventional EPI-SAGE images illustrates substantial reductions of image distortion and artifactual image intensity variations. Bioreactor phantom data show similar dynamic contrast time courses between standard EPI-SAGE and spiral-SAGE for the second and third echoes, whereas first-echo data show improvements in quantifying T1 changes with shorter echo times. In a cohort of patients with brain tumors, spiral-SAGE-based perfusion and permeability maps are shown with comparison with the standard single-echo EPI perfusion map. CONCLUSION: Spiral-SAGE provides a substantial improvement for the assessment of perfusion and permeability by mitigating artifacts typically encountered with EPI and by providing a shorter echo time for improved characterization of permeability. Spiral-SAGE enables quantification of perfusion, permeability, and vessel architectural parameters, as demonstrated in brain tumors.


Subject(s)
Brain Neoplasms , Contrast Media , Brain/diagnostic imaging , Brain Neoplasms/diagnostic imaging , Echo-Planar Imaging , Humans , Magnetic Resonance Imaging , Neuroimaging
9.
Magn Reson Med ; 84(1): 312-320, 2020 07.
Article in English | MEDLINE | ID: mdl-31788858

ABSTRACT

PURPOSE: Hyperpolarized 129 Xe MRI characterizes regional lung ventilation in a variety of disease populations, with high sensitivity to airway obstruction in early disease. However, ventilation images are usually limited to a single breath-hold and most-often acquired using gradient-recalled echo sequences with thick slices (~10-15 mm), which increases partial-volume effects, limits ability to observe small defects, and suffers from imperfect slice selection. We demonstrate higher-resolution ventilation images, in shorter breath-holds, using FLORET (Fermat Looped ORthogonally Encoded Trajectories), a center-out 3D-spiral UTE sequence. METHODS: In vivo human adult (N = 4; 2 healthy, 2 with cystic fibrosis) 129 Xe images were acquired using 2D gradient-recalled echo, 3D radial, and FLORET. Each sequence was acquired at its highest possible resolution within a 16-second breath-hold with a minimum voxel dimension of 3 mm. Images were compared using 129 Xe ventilation defect percentage, SNR, similarity coefficients, and vasculature cross-sections. RESULTS: The FLORET sequence obtained relative normalized SNR, 40% greater than 2D gradient-recalled echo (P = .012) and 26% greater than 3D radial (P = .067). Moreover, the FLORET images were acquired with 3-fold-higher nominal resolution in a 15% shorter breath-hold. Finally, vasculature was less prominent in FLORET, likely due to diminished susceptibility-induced dephasing at shorter TEs afforded by UTE sequences. CONCLUSION: The FLORET sequence yields higher SNR for a given resolution with a shorter breath-hold than traditional ventilation imaging techniques. This sequence more accurately measures ventilation abnormalities and enables reduced scan times in patients with poor compliance and severe lung disease.


Subject(s)
Imaging, Three-Dimensional , Magnetic Resonance Imaging , Adult , Breath Holding , Humans , Lung/diagnostic imaging , Pulmonary Ventilation , Respiration
10.
Magn Reson Med ; 82(3): 1091-1100, 2019 09.
Article in English | MEDLINE | ID: mdl-31081961

ABSTRACT

PURPOSE: Magnetic resonance imaging of lungs is inherently challenging, but it has become more common with the use of UTE sequences and their relative insensitivity to motion. Spiral UTE sequences have been touted recently as having greater k-space sampling efficiencies than radial UTE, but few are designed for the shorter T2 * of the lung. In this study, FLORET (Fermat looped, orthogonally encoded trajectories), a recently developed spiral 3D-UTE sequence designed for the short T2 * species, was implemented in human lungs for the first time and the images were compared with traditional radial UTE images. METHODS: The FLORET sequence was implemented with parameters optimized for lung imaging on healthy and diseased (cystic fibrosis) subjects. On healthy subjects, radial UTE images (3D-radial and 2D-radial with phase encoding) were acquired for comparison to FLORET. Various metrics including SNR, vasculature contrast, diaphragm sharpness, and parenchymal density ratios were acquired and compared among the separate UTE sequences. RESULTS: The FLORET sequence performed similarly to traditional radial UTE methods with a much shorter total scan time for fully sampled images (FLORET: 1 minute 55 seconds, 3D-radial: 3 minutes 25 seconds, 2D-radial with phase encoding: 7 minutes 22 seconds). Additionally, the FLORET image obtained on the cystic fibrosis subject resulted in the observation of cystic fibrosis lung pathology similar or superior to that of the other UTE-MRI techniques. CONCLUSION: The FLORET sequence allows for faster acquisition of high diagnostic-quality lung images and its short T2 * components without sacrificing SNR, image quality, or tissue/disease quantification.


Subject(s)
Imaging, Three-Dimensional/methods , Lung/diagnostic imaging , Magnetic Resonance Imaging/methods , Adolescent , Adult , Algorithms , Cystic Fibrosis/diagnostic imaging , Female , Humans , Male , Phantoms, Imaging , Young Adult
12.
Magn Reson Med ; 81(4): 2501-2513, 2019 04.
Article in English | MEDLINE | ID: mdl-30444004

ABSTRACT

PURPOSE: B0 eddy currents are a subtle but important source of artifacts in spiral MRI. This study illustrates the importance of addressing these artifacts and presents a system response-based eddy current correction strategy using B0 eddy current phase measurements on a phantom. METHODS: B0 and linear eddy current system response measurements were estimated from phantom-based measurement and used to predict residual eddy current effects in spiral acquisitions. The measurements were evaluated across multiple systems and gradient sets. The corresponding eddy current corrections were studied in both axial spiral-in/out TSE and sagittal spiral-out MPRAGE volunteer data. RESULTS: Correction of B0 eddy currents using the proposed method mitigated blurriness in the axial spiral-in/out images and artifacts in the sagittal spiral-out images. The system response measurement was found to yield repeatable results over time with some variation in the B0 eddy current responses measured between different systems. CONCLUSIONS: The proposed eddy current correction framework was effective in mitigating the effects of residual B0 and linear eddy currents. Any spiral acquisition should take residual eddy currents into account. This is particularly important in spiral-in/out acquisitions.


Subject(s)
Artifacts , Brain/diagnostic imaging , Image Interpretation, Computer-Assisted/methods , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging , Algorithms , Computer Simulation , Healthy Volunteers , Humans , Image Enhancement/methods , Models, Statistical , Motion , Phantoms, Imaging , Reproducibility of Results , Signal-To-Noise Ratio
13.
Pediatr Radiol ; 48(9): 1209-1222, 2018 08.
Article in English | MEDLINE | ID: mdl-30078043

ABSTRACT

The mediastinum, the central anatomical space of the thorax, is divided by anatomical landmarks but not by physical boundaries. The mediastinum is a conduit, a space through which cranial nerves, important nerve branches, the sympathetic chain, vascular structures, and visceral structures, the trachea and esophagus pass. This arrangement allows contiguous extension or communication of disease along facial planes and through potential spaces to and from the head and neck or cervical spine, to and from the superior mediastinum, between superior and inferior mediastinal levels, and between inferior mediastinal spaces into the intra- and retroperitoneal spaces. Magnetic resonance imaging (MRI) of the mediastinum in children poses technical challenges, in particular cardiac and respiratory motion, and diagnostic challenges, including a broad range of tissue types and possible diagnoses. In this paper we review mediastinal anatomy, MRI sequences and protocol choices and include a short discussion of features and MRI findings of some of the congenital and acquired pathologies that are most often encountered in the pediatric mediastinum.


Subject(s)
Magnetic Resonance Imaging/methods , Mediastinal Diseases/diagnostic imaging , Mediastinum/diagnostic imaging , Anatomic Landmarks , Child , Humans , Motion , Respiration
14.
Magn Reson Imaging ; 41: 63-72, 2017 09.
Article in English | MEDLINE | ID: mdl-28694017

ABSTRACT

Magnetic resonance fingerprinting (MRF) pulse sequences often employ spiral trajectories for data readout. Spiral k-space acquisitions are vulnerable to blurring in the spatial domain in the presence of static field off-resonance. This work describes a blurring correction algorithm for use in spiral MRF and demonstrates its effectiveness in phantom and in vivo experiments. Results show that image quality of T1 and T2 parametric maps is improved by application of this correction. This MRF correction has negligible effect on the concordance correlation coefficient and improves coefficient of variation in regions of off-resonance relative to uncorrected measurements.


Subject(s)
Brain/diagnostic imaging , Image Enhancement/methods , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Phantoms, Imaging , Algorithms , Artifacts , Contrast Media/chemistry , Healthy Volunteers , Humans , Magnetic Resonance Spectroscopy , Models, Statistical , Reproducibility of Results , Vibration
15.
Magn Reson Med ; 78(3): 1038-1049, 2017 09.
Article in English | MEDLINE | ID: mdl-27775843

ABSTRACT

PURPOSE: Three-dimensional ultrashort echo-time (UTE) imaging commonly makes use of an isotropic 3D radial projection acquisition. The FLORET sequence is proposed and evaluated as a more efficient alternative. METHODS: The properties of the FLORET trajectory are contrasted with those of a 3D radial projection trajectory. The theoretical advantages of FLORET, including greater sampling and SNR efficiency, are evaluated based upon experimental data. The effect of T2* decay on FLORET is analyzed in comparison to the 3D radial, Cones, and Density Adapted Radial trajectories. FLORET UTE image quality is compared with 3D radial UTE image quality. RESULTS: FLORET is shown to have several advantages over 3D radial acquisitions with respect to image quality, scan time, signal-to-noise, and off-resonance blurring for UTE data. The signal and resolution losses from T2* decay for a FLORET acquisition are shown to be comparable to those of Density Adapted Radial and Density Compensated Cones trajectories. CONCLUSION: The FLORET sequence is recommended as an alternative to 3D radial projection sequences for musculoskeletal UTE imaging as well as other UTE applications that accommodate modest to long per shot sampling times. FLORET is not recommended for imaging extremely short T2 species such as dentin. Magn Reson Med 78:1038-1049, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Subject(s)
Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/methods , Humans , Knee/diagnostic imaging , Phantoms, Imaging , Signal-To-Noise Ratio , Time Factors
16.
Magn Reson Med ; 75(2): 729-38, 2016 Feb.
Article in English | MEDLINE | ID: mdl-25753219

ABSTRACT

PURPOSE: T2 -weighted imaging is of great diagnostic value in neuroimaging. Three-dimensional (3D) Cartesian turbo spin echo (TSE) scans provide high signal-to-noise ratio (SNR) and contiguous slice coverage. The purpose of this preliminary work is to implement a novel 3D spiral TSE technique with image quality comparable to 2D/3D Cartesian TSE. METHODS: The proposed technique uses multislab 3D TSE imaging. To mitigate the slice boundary artifacts, a sliding-slab method is extended to spiral imaging. A spiral-in/out readout is adopted to minimize the artifacts that may be present with the conventional spiral-out readout. Phase errors induced by B0 eddy currents are measured and compensated to allow for the combination of the spiral-in and spiral-out images. A nonuniform slice encoding scheme is used to reduce the truncation artifacts while preserving the SNR performance. RESULTS: Preliminary results show that each of the individual measures contributes to the overall performance, and the image quality of the results obtained with the proposed technique is, in general, comparable to that of 2D or 3D Cartesian TSE. CONCLUSION: 3D sliding-slab TSE with a spiral-in/out readout provides good-quality T2 -weighted images, and, therefore, may become a promising alternative to Cartesian TSE.


Subject(s)
Brain/anatomy & histology , Image Enhancement/methods , Image Processing, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/methods , Artifacts , Healthy Volunteers , Humans , Signal-To-Noise Ratio
17.
Magn Reson Imaging ; 32(10): 1171-80, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25179133

ABSTRACT

Perfusion-based changes in MR signal intensity can occur in response to the introduction of exogenous contrast agents and endogenous tissue properties (e.g. blood oxygenation). MR measurements aimed at capturing these changes often implement single-shot echo planar imaging (ssEPI). In recent years ssEPI readouts have been combined with parallel imaging (PI) to allow fast dynamic multi-slice imaging as well as the incorporation of multiple echoes. A multiple spin- and gradient-echo (SAGE) EPI acquisition has recently been developed to allow measurement of transverse relaxation rate (R2 and R2(*)) changes in dynamic susceptibility contrast (DSC)-MRI experiments in the brain. With SAGE EPI, the use of PI can influence image quality, temporal resolution, and achievable echo times. The effect of PI on dynamic SAGE measurements, however, has not been evaluated. In this work, a SAGE EPI acquisition utilizing SENSE PI and partial Fourier (PF) acceleration was developed and evaluated. Voxel-wise measures of R2 and R2(*) in healthy brain were compared using SAGE EPI and conventional non-EPI multiple echo acquisitions with varying SENSE and PF acceleration. A conservative SENSE factor of 2 with PF factor of 0.73 was found to provide accurate measures of R2 and R2(*) in white (WM) (rR2=[0.55-0.79], rR2*=[0.47-0.71]) and gray (GM) matter (rR2=[0.26-0.59], rR2*=[0.39-0.74]) across subjects. The combined use of SENSE and PF allowed the first dynamic SAGE EPI measurements in muscle, with a SENSE factor of 3 and PF factor of 0.6 providing reliable relaxation rate estimates when compared to multi-echo methods. Application of the optimized SAGE protocol in DSC-MRI of high-grade glioma patients provided T1 leakage-corrected estimates of CBV and CBF as well as mean vessel diameter (mVD) and simultaneous measures of DCE-MRI parameters K(trans) and ve. Likewise, application of SAGE in a muscle reperfusion model allowed dynamic measures of R2', a parameter that has been shown to correlate with muscle oxy-hemoglobin saturation.


Subject(s)
Brain Neoplasms/pathology , Brain/pathology , Echo-Planar Imaging/methods , Glioma/pathology , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Acceleration , Adult , Algorithms , Brain/physiology , Contrast Media/chemistry , Female , Fourier Analysis , Humans , Leg/pathology , Male , Muscle, Skeletal/pathology , Muscles/pathology , Oxygen/chemistry , Perfusion Imaging , Reperfusion , Software
18.
Magn Reson Med ; 66(5): 1303-11, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21469190

ABSTRACT

A novel center-out 3D trajectory for sampling magnetic resonance data is presented. The trajectory set is based on a single Fermat spiral waveform, which is substantially undersampled in the center of k-space. Multiple trajectories are combined in a "stacked cone" configuration to give very uniform sampling throughout a "hub," which is very efficient in terms of gradient performance and uniform trajectory spacing. The fermat looped, orthogonally encoded trajectories (FLORET) design produces less gradient-efficient trajectories near the poles, so multiple orthogonal hub designs are shown. These multihub designs oversample k-space twice with orthogonal trajectories, which gives unique properties but also doubles the minimum scan time for critical sampling of k-space. The trajectory is shown to be much more efficient than the conventional stack of cones trajectory, and has nearly the same signal-to-noise ratio efficiency (but twice the minimum scan time) as a stack of spirals trajectory. As a center-out trajectory, it provides a shorter minimum echo time than stack of spirals, and its spherical k-space coverage can dramatically reduce Gibbs ringing.


Subject(s)
Magnetic Resonance Imaging/methods , Brain/anatomy & histology , Humans , Imaging, Three-Dimensional
19.
IEEE Trans Med Imaging ; 30(3): 655-65, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21062678

ABSTRACT

Spiral projection imaging (SPI) is a 3D, spiral based magnetic resonance imaging (MRI) acquisition scheme that allows for self-navigated motion estimation of all six degrees-of-freedom. The trajectory, a set of spiral planes, is enhanced to accommodate motion tracking by adding orthogonal planes. Rigid-body motion tracking is accomplished by comparing the overlapping data and deducing the motion that is consistent with the comparisons. The accuracy of the proposed method is quantified for simulated data and for data collected using both a phantom and a volunteer. These tests were repeated to measure the effect of off-resonance blurring, coil sensitivity, gradient warping, undersampling, and nonrigid motion (e.g., neck). The artifacts of off-resonance, coils sensitivity, and gradient warping impose an unnotable effect on the accuracy of motion estimation. The worst mean accuracy is 0.15° and 0.20 mm for the phantom while the worst mean accuracy is 0.48° and 0.34 mm when imaging a brain, indicating that the nonrigid component in human subjects slightly degrades accuracy. When applied to in vivo motion, the proposed technique considerably reduces motion artifact.


Subject(s)
Artifacts , Brain/anatomy & histology , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/methods , Pattern Recognition, Automated/methods , Algorithms , Humans , Motion , Reproducibility of Results , Sensitivity and Specificity
20.
Magn Reson Med ; 63(6): 1683-90, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20512872

ABSTRACT

Timing delays between data acquisition and gradient transmission result in image degradation. This is especially true in spiral MRI, where delays can alter data in a nonuniform manner, generating significant artifact in the reconstructed data. The many methods that exist to mitigate these delays or measure the k-space coordinates require long measurement times, complicated analysis, specialized phantoms or hardware, or significant changes to the sequence of interest. A fast and simple method is proposed to measure delays on each gradient channel. It requires only minimal modification to an existing spiral sequence and can be used to measure independent delays on three gradient channels and any scan subject within six sequence repetition times. The effectiveness and accuracy of this method are analyzed.


Subject(s)
Magnetic Resonance Imaging/methods , Artifacts , Phantoms, Imaging , Quality Control , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...