Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Bot ; 73(18): 6226-6240, 2022 10 18.
Article in English | MEDLINE | ID: mdl-35710302

ABSTRACT

Allelic variation in the CETS (CENTRORADIALIS, TERMINAL FLOWER 1, SELF PRUNING) gene family controls agronomically important traits in many crops. CETS genes encode phosphatidylethanolamine-binding proteins that have a central role in the timing of flowering as florigenic and anti-florigenic signals. The great expansion of CETS genes in many species suggests that the functions of this family go beyond flowering induction and repression. Here, we characterized the tomato SELF PRUNING 3C (SP3C) gene, and show that besides acting as a flowering repressor it also regulates seed germination and modulates root architecture. We show that loss of SP3C function in CRISPR/Cas9-generated mutant lines increases root length and reduces root side branching relative to the wild type. Higher SP3C expression in transgenic lines promotes the opposite effects in roots, represses seed germination, and also improves tolerance to water stress in seedlings. These discoveries provide new insights into the role of SP paralogs in agronomically relevant traits, and support future exploration of the involvement of CETS genes in abiotic stress responses.


Subject(s)
Droughts , Germination , Germination/genetics , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Phosphatidylethanolamines , Seeds/genetics , Seeds/metabolism
2.
Plant Cell Environ ; 43(1): 76-86, 2020 01.
Article in English | MEDLINE | ID: mdl-31691316

ABSTRACT

A major issue in modern agriculture is water loss through stomata during photosynthetic carbon assimilation. In water-limited ecosystems, annual plants have strategies to synchronize their growth and reproduction to the availability of water. Some species or ecotypes of flowers are early to ensure that their life cycles are completed before the onset of late season terminal drought ("drought escape"). This accelerated flowering correlates with low water-use efficiency (WUE). The molecular players and physiological mechanisms involved in this coordination are not fully understood. We analyzed WUE using gravimetry, gas exchange, and carbon isotope discrimination in florigen deficient (sft mutant), wild-type (Micro-Tom), and florigen over-expressing (SFT-ox) tomato lines. Increased florigen expression led to accelerated flowering time and reduced WUE. The low WUE of SFT-ox was driven by higher stomatal conductance and thinner leaf blades. This florigen-driven effect on WUE appears be independent of abscisic acid (ABA). Our results open a new avenue to increase WUE in crops in an ABA-independent manner. Manipulation of florigen levels could allow us to produce crops with a life cycle synchronized to water availability.


Subject(s)
Florigen/metabolism , Solanum lycopersicum/metabolism , Water/physiology , Abscisic Acid/metabolism , Carbon Isotopes/metabolism , Crops, Agricultural/genetics , Crops, Agricultural/metabolism , Droughts , Ecotype , Flowers/genetics , Flowers/metabolism , Gene Expression Regulation, Plant , Solanum lycopersicum/genetics , Photosynthesis , Plant Development , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Stomata/genetics , Plant Stomata/metabolism
3.
Plant Physiol ; 176(4): 2904-2916, 2018 04.
Article in English | MEDLINE | ID: mdl-29500181

ABSTRACT

The SELF PRUNING (SP) gene is a key regulator of growth habit in tomato (Solanum lycopersicum). It is an ortholog of TERMINAL FLOWER1, a phosphatidylethanolamine-binding protein with antiflorigenic activity in Arabidopsis (Arabidopsis thaliana). A spontaneous loss-of-function mutation (sp) has been bred into several industrial tomato cultivars, as it produces a suite of pleiotropic effects that are favorable for mechanical harvesting, including determinate growth habit, short plant stature, and simultaneous fruit ripening. However, the physiological basis for these phenotypic differences has not been thoroughly explained. Here, we show that the sp mutation alters polar auxin transport as well as auxin responses, such as gravitropic curvature and elongation of excised hypocotyl segments. We also demonstrate that free auxin levels and auxin-regulated gene expression patterns are altered in sp mutants. Furthermore, diageotropica, a mutation in a gene encoding a cyclophilin A protein, appears to confer epistatic effects with sp Our results indicate that SP affects the tomato growth habit at least in part by influencing auxin transport and responsiveness. These findings suggest potential novel targets that could be manipulated for controlling plant growth habit and improving productivity.


Subject(s)
Cyclophilin A/metabolism , Fruit/metabolism , Indoleacetic Acids/metabolism , Plant Proteins/metabolism , Solanum lycopersicum/metabolism , Biological Transport , Cyclophilin A/genetics , Fruit/genetics , Fruit/growth & development , Gene Expression Regulation, Developmental/drug effects , Gene Expression Regulation, Plant/drug effects , Indoleacetic Acids/pharmacology , Solanum lycopersicum/genetics , Solanum lycopersicum/growth & development , Mutation , Plant Growth Regulators/metabolism , Plant Growth Regulators/pharmacology , Plant Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...