Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Clin Exp Med ; 29(3): 331-337, 2020 03.
Article in English | MEDLINE | ID: mdl-32237285

ABSTRACT

BACKGROUND: More than half of pediatric tumors of central nervous system (CNS) primarily originate in the posterior fossa and are conventionally treated with radiation therapy (RT). OBJECTIVES: The objective of this study was to establish whether corpus callosum volumes (CCV) and whole brain volumes (WBV) are correlated and to determine the impact of whole-brain lowvs high-dose RT on brain parenchymal volume loss as assessed using each technique. MATERIAL AND METHODS: Of the 30 identified children (6-12 years) with newly diagnosed posterior fossa tumors treated with cranial RT, including focal and whole-brain RT, suitable imaging was obtained for 23. Radiotherapy regimens were the following: no whole-brain RT (Group 1, n = 7), low-dose whole-brain RT (<30 Gy, Group 2, n = 9) and high-dose whole-brain RT (>30 Gy, Group 3, n = 7) in addition to focal boost. Magnetic resonance images (MRIs) were analyzed at baseline and follow-up (median 14 months). The CCVs were manually segmented on midline sagittal slice (n = 23), while WBVs were segmented semi-automatically using Freesurfer (n = 15). This was done twice (6-month interval) for all baseline CCV measurements and 5 randomly selected WBV measurements to establish measurement reproducibility. Correlations between CCV and WBV were investigated and percentage of children demonstrating reduction in CCV or WBV noted. RESULTS: Correlation between baseline CCV and WBV was not significant (p = 0.37). Measurement reproducibility was from 6% to -9% for CCV and from 4.8% to -1.2% for WBV. Among the children studied, 30.4% (7/23) had >9% reduction in CCV at follow-up, while 33.3% (5/15) had >1.2% reduction in WBV. Five of 7 patients with CCV loss were not picked up by WBV measurements. Similarly, 3 of 5 patients with WBV loss were not picked up by CCV measurements. CONCLUSIONS: The CCV and the WBV are unrelated and may indicate different brain parenchymal losses following RT. Up to a third of posterior fossa tumors treated with RT have measurable CCV or WBV loss; incidence was equivalent in lowvs high-dose whole-brain RT.


Subject(s)
Brain Neoplasms/radiotherapy , Brain/radiation effects , Corpus Callosum/radiation effects , Infratentorial Neoplasms/radiotherapy , Radiotherapy/adverse effects , Child , Humans , Organ Size/radiation effects , Reproducibility of Results
2.
Br J Radiol ; 91(1084): 20170861, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29293365

ABSTRACT

OBJECTIVE: Brain injury is frequently observed during septic shock and may be primarily related to the direct effects of the septic insult on the brain or to secondary/indirect injuries (e.g. hypotension, hypoxaemia and hyperglycaemia). We sought to assess incidence and pattern of brain lesions diagnosed by neuroimaging in paediatric septic shock patients. METHODS: Retrospective descriptive hospital-based study included paediatric patients with a single episode of septic shock admitted to our tertiary paediatric intensive care unit from January 2010 to December 2013. RESULTS: 49 of 193 septic shock patients had a neuroimaging examination [CT only 22 (45%), MRI only 14 (29%) and both 13 (27%)]. Neuroimaging was normal in 16 patients (33%) and showed acute lesions in 20 patients (40%). The most frequent findings were: cerebral infarcts/hypoxic ischaemic injury in 8 (16%) and cerebritis in 7 (14%). The incidence of acute brain lesion in our septic shock cohort was 10% (20 of 193). CONCLUSION: The diagnosis of brain dysfunction in septic shock patients relies essentially on neurological examination and neurological tests, such as electroencephalography and neuroimaging. Neuroimaging can reveal acute intracerebral structural lesions and their reversibility, helping with management and prognosis. Advances in knowledge: Ischaemic lesions and cerebritis are the most common brain anomalies complicating paediatric septic shock.


Subject(s)
Brain Injuries/diagnostic imaging , Brain Injuries/etiology , Neuroimaging/methods , Shock, Septic/complications , Brain Injuries/epidemiology , Brain Injuries/pathology , Child , Child, Preschool , Female , Humans , Incidence , Infant , Infant, Newborn , Intensive Care Units, Pediatric , Magnetic Resonance Imaging , Male , Retrospective Studies , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL
...