Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 14(15): 17837-17848, 2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35380421

ABSTRACT

In this work, we report a facile preparation of biocomposites using a chitosan matrix that is reinforced with morphed graphene in amounts from 1 to 5 wt % C. The composites are processed by milling and conventional sintering. The morphed graphene additions show clear improvements in mechanical properties, having a direct correlation with temperature in particular for 180 °C. Higher temperatures are detrimental to chitosan and the properties drop because chitosan degrades. Mechanical properties in the composite such as yield strength and compressive strength increase between 40 and 50% with respect to the pure chitosan samples. The Young's modulus presents a drop of approximately 10%, but the fracture toughness increases up to 3.5 fold. The properties of our sustainable composites are comparable to those seen in polymers such as polyethylene, polypropylene, nylon, and poly(methyl methacrylate), among other commodity or single use plastics. The enhancement in the mechanical properties is attributed to the morphed graphene embedded chitosan matrix that generates a network of intergranular "anchors" that hold the chitosan crystals in place, preventing failure. The composites can be molded into near-net-shape products, machined, or shaped using various methods including laser lithography. These studies demonstrate the feasibility of fabricating biocomposites with different architectures and sizes for disposable structural components. Both chitosan and the composites are compostable and biodegradable with the potential to sustain plant growth when discarded. In addition, morphed graphene and chitosan are produced from byproducts or waste, which may result in a negative carbon footprint on the environment.


Subject(s)
Chitosan , Graphite , Chitosan/chemistry , Elastic Modulus , Polymers/chemistry , Polypropylenes
2.
Nano Lett ; 15(3): 2194-202, 2015 Mar 11.
Article in English | MEDLINE | ID: mdl-25706101

ABSTRACT

Mg rechargeable batteries (MgRBs) represent a safe and high-energy battery technology but suffer from the lack of suitable cathode materials due to the slow solid-state diffusion of the highly polarizing divalent Mg ion. Previous methods improve performance at the cost of incompatibility with anode/electrolyte and drastic decrease in volumetric energy density. Herein we report interlayer expansion as a general and effective atomic-level lattice engineering approach to transform inactive intercalation hosts into efficient Mg storage materials without introducing adverse side effects. As a proof-of-concept we have combined theory, synthesis, electrochemical measurement, and kinetic analysis to improve Mg diffusion behavior in MoS2, which is a poor Mg transporting material in its pristine form. First-principles simulations suggest that expanded interlayer spacing allows for fast Mg diffusion because of weakened Mg-host interactions. Experimentally, the expansion was realized by inserting a controlled amount of poly(ethylene oxide) into the lattice of MoS2 to increase the interlayer distance from 0.62 nm to up to 1.45 nm. The expansion boosts Mg diffusivity by 2 orders of magnitude, effectively enabling the otherwise barely active MoS2 to approach its theoretical storage capacity as well as to achieve one of the highest rate capabilities among Mg-intercalation materials. The interlayer expansion approach can be leveraged to a wide range of host materials for the storage of various ions, leading to novel intercalation chemistry and opening up new opportunities for the development of advanced materials for next-generation energy storage.

SELECTION OF CITATIONS
SEARCH DETAIL
...