Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Antioxidants (Basel) ; 13(3)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38539865

ABSTRACT

The guanine oxidized (GO) system of Bacillus subtilis, composed of the YtkD (MutT), MutM and MutY proteins, counteracts the cytotoxic and genotoxic effects of the oxidized nucleobase 8-OxoG. Here, we report that in growing B. subtilis cells, the genetic inactivation of GO system potentiated mutagenesis (HPM), and subsequent hyperresistance, contributes to the damaging effects of hydrogen peroxide (H2O2) (HPHR). The mechanism(s) that connect the accumulation of the mutagenic lesion 8-OxoG with the ability of B. subtilis to evolve and survive the noxious effects of oxidative stress were dissected. Genetic and biochemical evidence indicated that the synthesis of KatA was exacerbated, in a PerR-independent manner, and the transcriptional coupling repair factor, Mfd, contributed to HPHR and HPM of the ΔGO strain. Moreover, these phenotypes are associated with wider pleiotropic effects, as revealed by a global proteome analysis. The inactivation of the GO system results in the upregulated production of KatA, and it reprograms the synthesis of the proteins involved in distinct types of cellular stress; this has a direct impact on (i) cysteine catabolism, (ii) the synthesis of iron-sulfur clusters, (iii) the reorganization of cell wall architecture, (iv) the activation of AhpC/AhpF-independent organic peroxide resistance, and (v) increased resistance to transcription-acting antibiotics. Therefore, to contend with the cytotoxic and genotoxic effects derived from the accumulation of 8-OxoG, B. subtilis activates the synthesis of proteins belonging to transcriptional regulons that respond to a wide, diverse range of cell stressors.

2.
Microbiol Mol Biol Rev ; 88(2): e0015823, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38551349

ABSTRACT

SUMMARYThe metabolic conditions that prevail during bacterial growth have evolved with the faithful operation of repair systems that recognize and eliminate DNA lesions caused by intracellular and exogenous agents. This idea is supported by the low rate of spontaneous mutations (10-9) that occur in replicating cells, maintaining genome integrity. In contrast, when growth and/or replication cease, bacteria frequently process DNA lesions in an error-prone manner. DNA repairs provide cells with the tools needed for maintaining homeostasis during stressful conditions and depend on the developmental context in which repair events occur. Thus, different physiological scenarios can be anticipated. In nutritionally stressed bacteria, different components of the base excision repair pathway may process damaged DNA in an error-prone approach, promoting genetic variability. Interestingly, suppressing the mismatch repair machinery and activating specific DNA glycosylases promote stationary-phase mutations. Current evidence also suggests that in resting cells, coupling repair processes to actively transcribed genes may promote multiple genetic transactions that are advantageous for stressed cells. DNA repair during sporulation is of interest as a model to understand how transcriptional processes influence the formation of mutations in conditions where replication is halted. Current reports indicate that transcriptional coupling repair-dependent and -independent processes operate in differentiating cells to process spontaneous and induced DNA damage and that error-prone synthesis of DNA is involved in these events. These and other noncanonical ways of DNA repair that contribute to mutagenesis, survival, and evolution are reviewed in this manuscript.


Subject(s)
Bacillus subtilis , DNA Repair , Mutagenesis , DNA Repair/genetics , Bacillus subtilis/genetics , Bacillus subtilis/physiology , Stress, Physiological/genetics , DNA Damage , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , DNA Replication , DNA, Bacterial/genetics , Spores, Bacterial/genetics , Spores, Bacterial/growth & development
3.
Front Microbiol ; 13: 866089, 2022.
Article in English | MEDLINE | ID: mdl-35847079

ABSTRACT

Spontaneous DNA deamination is a potential source of transition mutations. In Bacillus subtilis, EndoV, a component of the alternative excision repair pathway (AER), counteracts the mutagenicity of base deamination-induced mispairs. Here, we report that the mismatch repair (MMR) system, MutSL, prevents the harmful effects of HNO2, a deaminating agent of Cytosine (C), Adenine (A), and Guanine (G). Using Maximum Depth Sequencing (MDS), which measures mutagenesis under conditions of neutral selection, in B. subtilis strains proficient or deficient in MutSL and/or EndoV, revealed asymmetric and heterogeneous patterns of mutations in both DNA template strands. While the lagging template strand showed a higher frequency of C → T substitutions; G → A mutations, occurred more frequently in the leading template strand in different genetic backgrounds. In summary, our results unveiled a role for MutSL in preventing the deleterious effects of base deamination and uncovered differential patterns of base deamination processing by the AER and MMR systems that are influenced by the sequence context and the replicating DNA strand.

4.
Int J Mol Sci ; 24(1)2022 Dec 27.
Article in English | MEDLINE | ID: mdl-36613897

ABSTRACT

A previous proteomic study uncovered a relationship between nutritional stress and fluctuations in levels of diadenylate cyclases (DACs) and other proteins that regulate DAC activity, degrade, or interact with c-di-AMP, suggesting a possible role of this second messenger in B. subtilis stress-associated mutagenesis (SAM). Here, we investigated a possible role of c-di-AMP in SAM and growth-associated mutagenesis (GAM). Our results showed that in growing cells of B. subtilis YB955 (hisC952, metB25 and leuC427), the DACs CdaA and DisA, which play crucial roles in cell wall homeostasis and chromosomal fidelity, respectively, counteracted spontaneous and Mitomycin-C-induced mutagenesis. However, experiments in which hydrogen peroxide was used to induce mutations showed that single deficiencies in DACs caused opposite effects compared to each other. In contrast, in the stationary-phase, DACs promoted mutations in conditions of nutritional stress. These results tracked with intracellular levels of c-di-AMP, which are significantly lower in cdaA- and disA-deficient strains. The restoration of DAC-deficient strains with single functional copies of the cdaA and/or disA returned SAM and GAM levels to those observed in the parental strain. Taken together, these results reveal a role for c-di-AMP in promoting genetic diversity in growth-limiting conditions in B. subtilis. Finally, we postulate that this novel function of c-di-AMP can be exerted through proteins that possess binding domains for this second messenger and play roles in DNA repair, ion transport, transcriptional regulation, as well as oxidative stress protection.


Subject(s)
Bacillus subtilis , Phosphorus-Oxygen Lyases , Bacillus subtilis/metabolism , Bacterial Proteins/metabolism , Mutagenesis , Phosphorus-Oxygen Lyases/metabolism , Proteomics
5.
Microorganisms ; 9(6)2021 Jun 12.
Article in English | MEDLINE | ID: mdl-34204686

ABSTRACT

Transcription-induced mutagenic mechanisms limit genetic changes to times when expression happens and to coding DNA. It has been hypothesized that intrinsic sequences that have the potential to form alternate DNA structures, such as non-B DNA structures, influence these mechanisms. Non-B DNA structures are promoted by transcription and induce genome instability in eukaryotic cells, but their impact in bacterial genomes is less known. Here, we investigated if G4 DNA- and hairpin-forming motifs influence stationary-phase mutagenesis in Bacillus subtilis. We developed a system to measure the influence of non-B DNA on B. subtilis stationary-phase mutagenesis by deleting the wild-type argF at its chromosomal position and introducing IPTG-inducible argF alleles differing in their ability to form hairpin and G4 DNA structures into an ectopic locus. Using this system, we found that sequences predicted to form non-B DNA structures promoted mutagenesis in B. subtilis stationary-phase cells; such a response did not occur in growing conditions. We also found that the transcription-coupled repair factor Mfd promoted mutagenesis at these predicted structures. In summary, we showed that non-B DNA-forming motifs promote genetic instability, particularly in coding regions in stressed cells; therefore, non-B DNA structures may have a spatial and temporal mutagenic effect in bacteria. This study provides insights into mechanisms that prevent or promote mutagenesis and advances our understanding of processes underlying bacterial evolution.

6.
Front Microbiol ; 12: 625705, 2021.
Article in English | MEDLINE | ID: mdl-33603726

ABSTRACT

For several decades, Mfd has been studied as the bacterial transcription-coupled repair factor. However, recent observations indicate that this factor influences cell functions beyond DNA repair. Our lab recently described a role for Mfd in disulfide stress that was independent of its function in nucleotide excision repair and base excision repair. Because reports showed that Mfd influenced transcription of single genes, we investigated the global differences in transcription in wild-type and mfd mutant growth-limited cells in the presence and absence of diamide. Surprisingly, we found 1,997 genes differentially expressed in Mfd- cells in the absence of diamide. Using gene knockouts, we investigated the effect of genetic interactions between Mfd and the genes in its regulon on the response to disulfide stress. Interestingly, we found that Mfd interactions were complex and identified additive, epistatic, and suppressor effects in the response to disulfide stress. Pathway enrichment analysis of our RNASeq assay indicated that major biological functions, including translation, endospore formation, pyrimidine metabolism, and motility, were affected by the loss of Mfd. Further, our RNASeq findings correlated with phenotypic changes in growth in minimal media, motility, and sensitivity to antibiotics that target the cell envelope, transcription, and DNA replication. Our results suggest that Mfd has profound effects on the modulation of the transcriptome and on bacterial physiology, particularly in cells experiencing nutritional and oxidative stress.

7.
Sci Rep ; 11(1): 2513, 2021 01 28.
Article in English | MEDLINE | ID: mdl-33510358

ABSTRACT

During sporulation Bacillus subtilis Mfd couples transcription to nucleotide excision repair (NER) to eliminate DNA distorting lesions. Here, we report a significant decline in sporulation following Mfd disruption, which was manifested in the absence of external DNA-damage suggesting that spontaneous lesions activate the function of Mfd for an efficient sporogenesis. Accordingly, a dramatic decline in sporulation efficiency took place in a B. subtilis strain lacking Mfd and the repair/prevention guanine oxidized (GO) system (hereafter, the ∆GO system), composed by YtkD, MutM and MutY. Furthermore, the simultaneous absence of Mfd and the GO system, (i) sensitized sporulating cells to H2O2, and (ii) elicited spontaneous and oxygen radical-induced rifampin-resistance (Rifr) mutagenesis. Epifluorescence (EF), confocal and transmission electron (TEM) microscopy analyses, showed a decreased ability of ∆GO ∆mfd strain to sporulate and to develop the typical morphologies of sporulating cells. Remarkably, disruption of sda, sirA and disA partially, restored the sporulation efficiency of the strain deficient for Mfd and the ∆GO system; complete restoration occurred in the RecA- background. Overall, our results unveil a novel Mfd mechanism of transcription-coupled-repair (TCR) elicited by 8-OxoG which converges in the activation of a RecA-dependent checkpoint event that control the onset of sporulation in B. subtilis.


Subject(s)
Bacillus subtilis/genetics , Bacillus subtilis/metabolism , DNA Repair , Guanine/analogs & derivatives , Rec A Recombinases/metabolism , Transcription, Genetic , Bacillus subtilis/ultrastructure , DNA Damage , Gene Expression Regulation, Bacterial , Guanine/metabolism , Mutation , Reactive Oxygen Species , Spores, Bacterial
8.
Appl Environ Microbiol ; 86(20)2020 10 01.
Article in English | MEDLINE | ID: mdl-32801174

ABSTRACT

Cr(VI) is mutagenic and teratogenic and considered an environmental pollutant of increasing concern. The use of microbial enzymes that convert this ion into its less toxic reduced insoluble form, Cr(III), represents a valuable bioremediation strategy. In this study, we examined the Bacillus subtilis YhdA enzyme, which belongs to the family of NADPH-dependent flavin mononucleotide oxide reductases and possesses azo-reductase activity as a factor that upon overexpression confers protection on B. subtilis from the cytotoxic effects promoted by Cr(VI) and counteracts the mutagenic effects of the reactive oxygen species (ROS)-promoted lesion 8-OxoG. Further, our in vitro assays unveiled catalytic and biochemical properties of biotechnological relevance in YhdA; a pure recombinant His10-YhdA protein efficiently catalyzed the reduction of Cr(VI) employing NADPH as a cofactor. The activity of the pure oxidoreductase YhdA was optimal at 30°C and at pH 7.5 and displayed Km and Vmax values of 7.26 mM and 26.8 µmol·min-1·mg-1 for Cr(VI), respectively. Therefore, YhdA can be used for efficient bioremediation of Cr(VI) and counteracts the cytotoxic and genotoxic effects of oxygen radicals induced by intracellular factors and those generated during reduction of hexavalent chromium.IMPORTANCE Here, we report that the bacterial flavin mononucleotide/NADPH-dependent oxidoreductase YhdA, widely distributed among Gram-positive bacilli, conferred protection to cells from the cytotoxic effects of Cr(VI) and prevented the hypermutagenesis exhibited by a MutT/MutM/MutY-deficient strain. Additionally, a purified recombinant His10-YhdA protein displayed a strong NADPH-dependent chromate reductase activity. Therefore, we postulate that in bacterial cells, YhdA counteracts the cytotoxic and genotoxic effects of intracellular and extracellular inducers of oxygen radicals, including those caused by hexavalent chromium.


Subject(s)
Bacillus subtilis/drug effects , Bacillus subtilis/physiology , Bacterial Proteins/metabolism , Chromium/toxicity , FMN Reductase/metabolism , Bacillus subtilis/enzymology , Bacillus subtilis/genetics , Bacterial Proteins/chemistry , FMN Reductase/chemistry
9.
Genes (Basel) ; 11(2)2020 02 11.
Article in English | MEDLINE | ID: mdl-32053972

ABSTRACT

Bacterial cells develop mutations in the absence of cellular division through a process known as stationary-phase or stress-induced mutagenesis. This phenomenon has been studied in a few bacterial models, including Escherichia coli and Bacillus subtilis; however, the underlying mechanisms between these systems differ. For instance, RecA is not required for stationary-phase mutagenesis in B. subtilis like it is in E. coli. In B. subtilis, RecA is essential to the process of genetic transformation in the subpopulation of cells that become naturally competent in conditions of stress. Interestingly, the transcriptional regulator ComK, which controls the development of competence, does influence the accumulation of mutations in stationary phase in B. subtilis. Since recombination is not involved in this process even though ComK is, we investigated if the development of a subpopulation (K-cells) could be involved in stationary-phase mutagenesis. Using genetic knockout strains and a point-mutation reversion system, we investigated the effects of ComK, ComEA (a protein involved in DNA transport during transformation), and oxidative damage on stationary-phase mutagenesis. We found that stationary-phase revertants were more likely to have undergone the development of competence than the background of non-revertant cells, mutations accumulated independently of DNA uptake, and the presence of exogenous oxidants potentiated mutagenesis in K-cells. Therefore, the development of the K-state creates conditions favorable to an increase in the genetic diversity of the population not only through exogenous DNA uptake but also through stationary-phase mutagenesis.


Subject(s)
Bacillus subtilis/genetics , Bacterial Proteins/metabolism , Cell Cycle Checkpoints/genetics , DNA-Binding Proteins/metabolism , Membrane Proteins/metabolism , Mutagenesis , Oxidative Stress/genetics , Transcription Factors/metabolism , Bacillus subtilis/drug effects , Bacterial Proteins/genetics , Cell Cycle Checkpoints/physiology , DNA-Binding Proteins/genetics , Gene Expression Regulation, Bacterial , Gene Knockout Techniques , Membrane Proteins/genetics , Mutagenesis/drug effects , Mutagenesis/genetics , Oxidation-Reduction , Oxidative Stress/physiology , Transcription Factors/genetics , Transformation, Bacterial
10.
J Bacteriol ; 202(9)2020 04 09.
Article in English | MEDLINE | ID: mdl-32041798

ABSTRACT

We report that the absence of an oxidized guanine (GO) system or the apurinic/apyrimidinic (AP) endonucleases Nfo, ExoA, and Nth promoted stress-associated mutagenesis (SAM) in Bacillus subtilis YB955 (hisC952 metB5 leuC427). Moreover, MutY-promoted SAM was Mfd dependent, suggesting that transcriptional transactions over nonbulky DNA lesions promoted error-prone repair. Here, we inquired whether Mfd and GreA, which control transcription-coupled repair and transcription fidelity, influence the mutagenic events occurring in nutritionally stressed B. subtilis YB955 cells deficient in the GO or AP endonuclease repair proteins. To this end, mfd and greA were disabled in genetic backgrounds defective in the GO and AP endonuclease repair proteins, and the strains were tested for growth-associated and stress-associated mutagenesis. The results revealed that disruption of mfd or greA abrogated the production of stress-associated amino acid revertants in the GO and nfo exoA nth strains, respectively. These results suggest that in nutritionally stressed B. subtilis cells, spontaneous nonbulky DNA lesions are processed in an error-prone manner with the participation of Mfd and GreA. In support of this notion, stationary-phase ΔytkD ΔmutM ΔmutY (referred to here as ΔGO) and Δnfo ΔexoA Δnth (referred to here as ΔAP) cells accumulated 8-oxoguanine (8-OxoG) lesions, which increased significantly following Mfd disruption. In contrast, during exponential growth, disruption of mfd or greA increased the production of His+, Met+, or Leu+ prototrophs in both DNA repair-deficient strains. Thus, in addition to unveiling a role for GreA in mutagenesis, our results suggest that Mfd and GreA promote or prevent mutagenic events driven by spontaneous genetic lesions during the life cycle of B. subtilisIMPORTANCE In this paper, we report that spontaneous genetic lesions of an oxidative nature in growing and nutritionally stressed B. subtilis strain YB955 (hisC952 metB5 leuC427) cells drive Mfd- and GreA-dependent repair transactions. However, whereas Mfd and GreA elicit faithful repair events during growth to maintain genome fidelity, under starving conditions, both factors promote error-prone repair to produce genetic diversity, allowing B. subtilis to escape from growth-limiting conditions.


Subject(s)
Bacillus subtilis/growth & development , Bacillus subtilis/metabolism , Bacterial Proteins/metabolism , DNA Repair , Transcription Factors/metabolism , Bacillus subtilis/genetics , Bacterial Proteins/genetics , DNA Damage , Gene Expression Regulation, Bacterial , Mutagenesis , Mutation , Transcription Factors/genetics
11.
BMC Microbiol ; 19(1): 26, 2019 01 28.
Article in English | MEDLINE | ID: mdl-30691388

ABSTRACT

BACKGROUND: Previous reports showed that mutagenesis in nutrient-limiting conditions is dependent on Mfd in Bacillus subtilis. Mfd initiates one type of transcription-coupled repair (TCR); this type of repair is known to target bulky lesions, like those associated with UV exposure. Interestingly, the roles of Mfd in repair of oxidative-promoted DNA damage and regulation of transcription differ. Here, we used a genetic approach to test whether Mfd protected B. subtilis from exposure to two different oxidants. RESULTS: Wild-type cells survived tert-butyl hydroperoxide (t-BHP) exposure significantly better than Mfd-deficient cells. This protective effect was independent of UvrA, a component of the canonical TCR/nucleotide excision repair (NER) pathway. Further, our results suggest that Mfd and MutY, a DNA glycosylase that processes 8-oxoG DNA mismatches, work together to protect cells from lesions generated by oxidative damage. We also tested the role of Mfd in mutagenesis in starved cells exposed to t-BHP. In conditions of oxidative stress, Mfd and MutY may work together in the formation of mutations. Unexpectedly, Mfd increased survival when cells were exposed to the protein oxidant diamide. Under this type of oxidative stress, cells survival was not affected by MutY or UvrA. CONCLUSIONS: These results are significant because they show that Mfd mediates error-prone repair of DNA and protects cells against oxidation of proteins by affecting gene expression; Mfd deficiency resulted in increased gene expression of the OhrR repressor which controls the cellular response to organic peroxide exposure. These observations point to Mfd functioning beyond a DNA repair factor in cells experiencing oxidative stress.


Subject(s)
Bacillus subtilis/drug effects , Bacillus subtilis/genetics , Bacterial Proteins/genetics , DNA Repair , Oxidants/pharmacology , Oxidative Stress , Transcription Factors/genetics , DNA Glycosylases/genetics , Diamide/pharmacology , Mutation , Transcription, Genetic , tert-Butylhydroperoxide/pharmacology
12.
PLoS One ; 12(7): e0179625, 2017.
Article in English | MEDLINE | ID: mdl-28700593

ABSTRACT

A forward mutagenesis system based on the acquisition of mutations that inactivate the thymidylate synthase gene (TMS) and confer a trimethoprim resistant (Tmpr) phenotype was developed and utilized to study transcription-mediated mutagenesis (TMM). In addition to thyA, Bacillus subtilis possesses thyB, whose expression occurs under conditions of cell stress; therefore, we generated a thyB- thyA+ mutant strain. Tmpr colonies of this strain were produced with a spontaneous mutation frequency of ~1.4 × 10-9. Genetic disruption of the canonical mismatch (MMR) and guanine oxidized (GO) repair pathways increased the Tmpr frequency of mutation by ~2-3 orders of magnitude. A wide spectrum of base substitutions as well as insertion and deletions in the ORF of thyA were found to confer a Tmpr phenotype. Stationary-phase-associated mutagenesis (SPM) assays revealed that colonies with a Tmpr phenotype, accumulated over a period of ten days with a frequency of ~ 60 ×10-7. The Tmpr system was further modified to study TMM by constructing a ΔthyA ΔthyB strain carrying an IPTG-inducible Pspac-thyA cassette. In conditions of transcriptional induction of thyA, the generation of Tmpr colonies increased ~3-fold compared to conditions of transcriptional repression. Further, the Mfd and GreA factors were necessary for the generation of Tmpr colonies in the presence of IPTG in B. subtilis. Because GreA and Mfd facilitate transcription-coupled repair, our results suggest that TMM is a mechanim to produce genetic diversity in highly transcribed regions in growth-limited B. subtilis cells.


Subject(s)
Bacillus subtilis/growth & development , Bacillus subtilis/drug effects , Bacillus subtilis/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Mutagenesis , Mutation , Thymidylate Synthase/genetics , Thymidylate Synthase/metabolism , Trimethoprim/pharmacology
13.
Chemosphere ; 182: 149-158, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28494359

ABSTRACT

Bacteria can grow in the presence of trimethoprim and sulfamethoxazole by expressing antibiotic resistance genes or by acquiring thymine or thymidine from environmental reservoirs to facilitate DNA synthesis. The purpose of this study was to evaluate whether activated sludge serves as a reservoir for thymine or thymidine, potentially impacting the quantification of antibiotic resistant bacteria. This study also assessed the impacts of varying solids retention time (SRT) on trimethoprim and sulfamethoxazole removal during wastewater treatment and single and multi-drug resistance. When assayed in the presence of the antibiotics at standard clinical concentrations, up to 40% increases in the relative prevalence of resistant bacteria were observed with (1) samples manually augmented with reagent-grade thymidine, (2) samples manually augmented with sonicated biomass (i.e., cell lysate), (3) samples manually augmented with activated sludge filtrate, and (4) activated sludge samples collected from reactors with longer SRTs. These observations suggest that longer SRTs may select for antibiotic resistant bacteria and/or result in false positives for antibiotic resistance due to higher concentrations of free thymine, thymidine, or other extracellular constituents.


Subject(s)
Anti-Bacterial Agents/analysis , Drug Resistance, Bacterial , Anti-Bacterial Agents/pharmacology , Sewage/chemistry , Sewage/microbiology , Sulfamethoxazole/analysis , Sulfamethoxazole/pharmacology , Trimethoprim/analysis , Trimethoprim/pharmacology , Wastewater/chemistry , Wastewater/microbiology , Water Purification/methods , Water Purification/standards
14.
Bio Protoc ; 7(23): e2634, 2017 Dec 05.
Article in English | MEDLINE | ID: mdl-34595302

ABSTRACT

Elucidating how a population of non-growing bacteria generates mutations improves our understanding of phenomena like antibiotic resistance, bacterial pathogenesis, genetic diversity and evolution. To evaluate mutations that occur in nutritionally stressed non-growing bacteria, we have employed the strain B. subtilis YB955, which measures the reversions rates to the chromosomal auxotrophies hisC952, metB5 and leuC427 (Sung and Yasbin, 2002). This gain-of-function system has successfully allowed establishing the role played by repair systems and transcriptional factors in stress-associated mutagenesis (SPM) (Barajas- Ornelas et al., 2014 ; Gómez- Marroquín et al., 2016 ). In a recent study (Castro- Cerritos et al., 2017 ), it was found that Ribonucleotide Reductase (RNR) was necessary for SPM; this enzyme is essential in this bacterium. We engineered a conditional mutant of strain B. subtilis YB955 in which expression of the nrdEF operon was modulated by isopropyl-ß-D-thiogalactopyranoside (IPTG) (Castro- Cerritos et al., 2017 ). The conditions to determine mutation frequencies conferring amino acid prototrophy in three genes (hisC952, metB5, leuC427) under nutritional stress in this conditional mutant are detailed here. This technique could be used to evaluate the participation of essential genes in the mutagenic processes occurring in stressed B. subtilis cells.

15.
J Bacteriol ; 199(4)2017 02 15.
Article in English | MEDLINE | ID: mdl-27920297

ABSTRACT

The Gram-positive microorganism Bacillus subtilis relies on a single class Ib ribonucleotide reductase (RNR) to generate 2'-deoxyribonucleotides (dNDPs) for DNA replication and repair. In this work, we investigated the influence of RNR levels on B. subtilis stationary-phase-associated mutagenesis (SPM). Since RNR is essential in this bacterium, we engineered a conditional mutant of strain B. subtilis YB955 (hisC952 metB5 leu427) in which expression of the nrdEF operon was modulated by isopropyl-ß-d-thiogalactopyranoside (IPTG). Moreover, genetic inactivation of ytcG, predicted to encode a repressor (NrdR) of nrdEF in this strain, dramatically increased the expression levels of a transcriptional nrdE-lacZ fusion. The frequencies of mutations conferring amino acid prototrophy in three genes were measured in cultures under conditions that repressed or induced RNR-encoding genes. The results revealed that RNR was necessary for SPM and overexpression of nrdEF promoted growth-dependent mutagenesis and SPM. We also found that nrdEF expression was induced by H2O2 and such induction was dependent on the master regulator PerR. These observations strongly suggest that the metabolic conditions operating in starved B. subtilis cells increase the levels of RNR, which have a direct impact on SPM. IMPORTANCE: Results presented in this study support the concept that the adverse metabolic conditions prevailing in nutritionally stressed bacteria activate an oxidative stress response that disturbs ribonucleotide reductase (RNR) levels. Such an alteration of RNR levels promotes mutagenic events that allow Bacillus subtilis to escape from growth-limited conditions.


Subject(s)
Bacillus subtilis/enzymology , Gene Expression Regulation, Bacterial/physiology , Gene Expression Regulation, Enzymologic/physiology , Oxidative Stress/physiology , Ribonucleotide Reductases/metabolism , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Mutagenesis , Mutation , Ribonucleotide Reductases/genetics
16.
Curr Microbiol ; 73(5): 721-726, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27530626

ABSTRACT

Compelling evidence points to transcriptional processes as important factors contributing to stationary-phase associated mutagenesis. However, it has not been documented whether or not base excision repair mechanisms play a role in modulating mutagenesis under conditions of transcriptional derepression. Here, we report on a flow cytometry-based methodology that employs a fluorescent reporter system to measure at single-cell level, the occurrence of transcription-associated mutations in nutritionally stressed B. subtilis cultures. Using this approach, we demonstrate that (i) high levels of transcription correlates with augmented mutation frequency, and (ii) mutation frequency is enhanced in nongrowing population cells deficient for deaminated (Ung, YwqL) and oxidized guanine (GO) excision repair, strongly suggesting that accumulation of spontaneous DNA lesions enhance transcription-associated mutagenesis.


Subject(s)
Bacillus subtilis/growth & development , Bacillus subtilis/genetics , DNA Repair , Transcription, Genetic , Bacillus subtilis/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Flow Cytometry , Mutagenesis
17.
Genes (Basel) ; 7(7)2016 Jul 05.
Article in English | MEDLINE | ID: mdl-27399782

ABSTRACT

In replication-limited cells of Bacillus subtilis, Mfd is mutagenic at highly transcribed regions, even in the absence of bulky DNA lesions. However, the mechanism leading to increased mutagenesis through Mfd remains currently unknown. Here, we report that Mfd may promote mutagenesis in nutritionally stressed B. subtilis cells by coordinating error-prone repair events mediated by UvrA, MutY and PolI. Using a point-mutated gene conferring leucine auxotrophy as a genetic marker, it was found that the absence of UvrA reduced the Leu⁺ revertants and that a second mutation in mfd reduced mutagenesis further. Moreover, the mfd and polA mutants presented low but similar reversion frequencies compared to the parental strain. These results suggest that Mfd promotes mutagenic events that required the participation of NER pathway and PolI. Remarkably, this Mfd-dependent mutagenic pathway was found to be epistatic onto MutY; however, whereas the MutY-dependent Leu⁺ reversions required Mfd, a direct interaction between these proteins was not apparent. In summary, our results support the concept that Mfd promotes mutagenesis in starved B. subtilis cells by coordinating both known and previously unknown Mfd-associated repair pathways. These mutagenic processes bias the production of genetic diversity towards highly transcribed regions in the genome.

18.
J Bacteriol ; 197(11): 1963-71, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25825434

ABSTRACT

UNLABELLED: Reactive oxygen species (ROS) promote the synthesis of the DNA lesion 8-oxo-G, whose mutagenic effects are counteracted in distinct organisms by the DNA glycosylase MutM. We report here that in Bacillus subtilis, mutM is expressed during the exponential and stationary phases of growth. In agreement with this expression pattern, results of a Western blot analysis confirmed the presence of MutM in both stages of growth. In comparison with cells of a wild-type strain, cells of B. subtilis lacking MutM increased their spontaneous mutation frequency to Rif(r) and were more sensitive to the ROS promoter agents hydrogen peroxide and 1,1'-dimethyl-4,4'-bipyridinium dichloride (Paraquat). However, despite MutM's proven participation in preventing ROS-induced-DNA damage, the expression of mutM was not induced by hydrogen peroxide, mitomycin C, or NaCl, suggesting that transcription of this gene is not under the control of the RecA, PerR, or σ(B) regulons. Finally, the role of MutM in stationary-phase-associated mutagenesis (SPM) was investigated in the strain B. subtilis YB955 (hisC952 metB5 leuC427). Results revealed that under limiting growth conditions, a mutM knockout strain significantly increased the amount of stationary-phase-associated his, met, and leu revertants produced. In summary, our results support the notion that the absence of MutM promotes mutagenesis that allows nutritionally stressed B. subtilis cells to escape from growth-limiting conditions. IMPORTANCE: The present study describes the role played by a DNA repair protein (MutM) in protecting the soil bacterium Bacillus subtilis from the genotoxic effects induced by reactive oxygen species (ROS) promoter agents. Moreover, it reveals that the genetic inactivation of mutM allows nutritionally stressed bacteria to escape from growth-limiting conditions, putatively by a mechanism that involves the accumulation and error-prone processing of oxidized DNA bases.


Subject(s)
Bacillus subtilis/enzymology , Bacillus subtilis/genetics , Bacterial Proteins/metabolism , DNA Damage , DNA Glycosylases/metabolism , Mutagenesis , Bacillus subtilis/growth & development , Bacillus subtilis/physiology , Bacterial Proteins/genetics , DNA Glycosylases/genetics , Gene Expression Regulation, Bacterial , Oxidative Stress , Stress, Physiological
19.
J Bacteriol ; 196(16): 3012-22, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-24914186

ABSTRACT

In growing cells, apurinic/apyrimidinic (AP) sites generated spontaneously or resulting from the enzymatic elimination of oxidized bases must be processed by AP endonucleases before they compromise cell integrity. Here, we investigated how AP sites and the processing of these noncoding lesions by the AP endonucleases Nfo, ExoA, and Nth contribute to the production of mutations (hisC952, metB5, and leuC427) in starved cells of the Bacillus subtilis YB955 strain. Interestingly, cells from this strain that were deficient for Nfo, ExoA, and Nth accumulated a greater amount of AP sites in the stationary phase than during exponential growth. Moreover, under growth-limiting conditions, the triple nfo exoA nth knockout strain significantly increased the amounts of adaptive his, met, and leu revertants produced by the B. subtilis YB955 parental strain. Of note, the number of stationary-phase-associated reversions in the his, met, and leu alleles produced by the nfo exoA nth strain was significantly decreased following disruption of polX. In contrast, during growth, the reversion rates in the three alleles tested were significantly increased in cells of the nfo exoA nth knockout strain deficient for polymerase X (PolX). Therefore, we postulate that adaptive mutations in B. subtilis can be generated through a novel mechanism mediated by error-prone processing of AP sites accumulated in the stationary phase by the PolX DNA polymerase.


Subject(s)
Adaptation, Biological , Bacillus subtilis/growth & development , Bacillus subtilis/genetics , DNA Damage , DNA Repair , DNA-Directed DNA Polymerase/metabolism , DNA Repair Enzymes/metabolism , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Mutation
20.
Mol Microbiol ; 90(5): 1088-99, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24118570

ABSTRACT

In conditions of halted or limited genome replication, like those experienced in sporulating cells of Bacillus subtilis, a more immediate detriment caused by DNA damage is altering the transcriptional programme that drives this developmental process. Here, we report that mfd, which encodes a conserved bacterial protein that mediates transcription-coupled DNA repair (TCR), is expressed together with uvrA in both compartments of B. subtilis sporangia. The function of Mfd was found to be important for processing the genetic damage during B. subtilis sporulation. Disruption of mfd sensitized developing spores to mitomycin-C (M-C) treatment and UV-C irradiation. Interestingly, in non-growing sporulating cells, Mfd played an anti-mutagenic role as its absence promoted UV-induced mutagenesis through a pathway involving YqjH/YqjW-mediated translesion synthesis (TLS). Two observations supported the participation of Mfd-dependent TCR in spore morphogenesis: (i) disruption of mfd notoriously affected the efficiency of B. subtilis sporulation and (ii) in comparison with the wild-type strain, a significant proportion of Mfd-deficient sporangia that survived UV-C treatment developed an asporogenous phenotype. We propose that the Mfd-dependent repair pathway operates during B. subtilis sporulation and that its function is required to eliminate genetic damage from transcriptionally active genes.


Subject(s)
Bacillus subtilis/genetics , Bacillus subtilis/physiology , Bacterial Proteins/metabolism , DNA Repair , Transcription Factors/metabolism , Bacillus subtilis/radiation effects , Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial , Gene Knockout Techniques , Mitomycin/pharmacology , Phenotype , Signal Transduction/drug effects , Signal Transduction/radiation effects , Sporangia/genetics , Sporangia/metabolism , Sporangia/radiation effects , Spores, Bacterial/genetics , Spores, Bacterial/physiology , Spores, Bacterial/radiation effects , Transcription Factors/genetics , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...