Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Phys Rev E ; 109(5-1): 054210, 2024 May.
Article in English | MEDLINE | ID: mdl-38907426

ABSTRACT

We study the mixed-type classical dynamics of the three-particle Fermi-Pasta-Ulam-Tsingou (FPUT) model in relationship with its quantum counterpart and present new results on aspects of quantum chaos in this system. First we derive for the general N-particle FPUT system the transformation to the normal mode representation. Then we specialize to the three-particle FPUT case and derive analytically the semiclassical energy density of states, and its derivatives in which different singularies are determined, using the Thomas-Fermi rule. The result agrees with the numerical energy density from the Krylov subspace method, as well as with the energy density obtained by the method of quantum typicality. Here, in paper I, we concentrate on the energy level statistics (level spacing and spacing ratios), in all classical dynamical regimes of interest: the almost entirely regular, the entirely chaotic, and the mixed-type regimes. We clearly confirm, correspondingly, the Poissonian statistics, the Gaussian orthogonal ensemble statistics, and the Berry-Robnik-Brody (BRB) statistics in the mixed-type regime. It is found that the BRB level spacing distribution perfectly fits the numerical data. The extracted quantum Berry-Robnik parameter is found to agree with the classical value within better than one percent. We discuss the role of localization of chaotic eigenstates, and its appearances, in relation to the classical phase space structure (Poincaré and smaller alignment index plots), whose details will be presented in paper II, where the structure and the statistical properties of the Husimi functions in the quantum phase space will be studied.

2.
Phys Rev E ; 109(5-1): 054211, 2024 May.
Article in English | MEDLINE | ID: mdl-38907483

ABSTRACT

We undertake a thorough investigation into the phenomenology of quantum eigenstates, in the three-particle Fermi-Pasta-Ulam-Tsingou model. Employing different Husimi functions, our study focuses on both the α-type, which is canonically equivalent to the celebrated Hénon-Heiles Hamiltonian, a nonintegrable and mixed-type system, and the general case at the saddle energy where the system is fully chaotic. Based on Husimi quantum surface of sections, we find that in the mixed-type system, the fraction of mixed eigenstates in an energy shell [E-δE/2,E+δE/2] with δE≪E shows a power-law decay with respect to the decreasing Planck constant ℏ. Defining the localization measures in terms of the Rényi-Wehrl entropy, in both the mixed-type and fully chaotic systems, we find a better fit with the ß distribution and a lesser degree of localization, in the distribution of localization measures of chaotic eigenstates, as the controlling ratio α_{L}=t_{H}/t_{T} between the Heisenberg time t_{H} and the classical transport time t_{T} increases. This transition with respect to α_{L} and the power-law decay of the mixed states, together provide supporting evidence for the principle of uniform semiclassical condensation in the semiclassical limit. Moreover, we find that in the general case which is fully chaotic, the maximally localized state, is influenced by the stable and unstable manifold of the saddles (hyperbolic fixed points), while the maximally extended state notably avoids these points, extending across the remaining space, complementing each other.

3.
Phys Rev E ; 109(2-1): 024225, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38491571

ABSTRACT

How the mixed eigenstates vary when approaching the semiclassical limit in mixed-type many-body quantum systems is an interesting but still less known question. Here, we address this question in the Dicke model, a celebrated many-body model that has a well defined semiclassical limit and undergoes a transition to chaos in both quantum and classical cases. Using the Husimi function, we show that the eigenstates of the Dicke model with mixed-type classical phase space can be classified into different types. To quantitatively characterize the types of eigenstates, we study the phase space overlap index, which is defined in terms of the Husimi function. We look at the probability distribution of the phase space overlap index and investigate how it changes with increasing system size, that is, when approaching the semiclassical limit. We show that increasing the system size gives rise to a power-law decay in the behavior of the relative proportion of mixed eigenstates. Our findings shed more light on the properties of eigenstates in mixed-type many-body systems and suggest that the principle of uniform semiclassical condensation of Husimi functions should also be valid for many-body quantum systems.

4.
Phys Rev E ; 108(5-1): 054217, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38115398

ABSTRACT

The properties of mixed eigenstates in a generic quantum system with a classical counterpart that has mixed-type phase space, although important to understand several fundamental questions that arise in both theoretical and experimental studies, are still not clear. Here, following a recent work [C. Lozej, D. Lukman, and M. Robnik, Phys. Rev. E 106, 054203 (2022)2470-004510.1103/PhysRevE.106.054203], we perform an analysis of the features of mixed eigenstates in a time-dependent Hamiltonian system, the celebrated kicked top model. As a paradigmatic model for studying quantum chaos, the kicked top model is known to exhibit both classical and quantum chaos. The types of eigenstates are identified by means of the phase-space overlap index, which is defined as the overlap of the Husimi function with regular and chaotic regions in classical phase space. We show that the mixed eigenstates appear due to various tunneling precesses between different phase-space structures, while the regular and chaotic eigenstates are, respectively, associated with invariant tori and chaotic components in phase space. We examine how the probability distribution of the phase-space overlap index evolves with increasing system size for different kicking strengths. In particular, we find that the relative fraction of mixed states exhibits a power-law decay as the system size increases, indicating that only purely regular and chaotic eigenstates are left in the strict semiclassical limit. We thus provide further verification of the principle of uniform semiclassical condensation of Husimi functions and confirm the correctness of the Berry-Robnik picture.

5.
Entropy (Basel) ; 25(9)2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37761578

ABSTRACT

Quantum chaos is the study of phenomena in the quantum domain which correspond to classical chaos [...].

6.
Phys Rev E ; 107(5-1): 054213, 2023 May.
Article in English | MEDLINE | ID: mdl-37328969

ABSTRACT

Quantum chaos plays a significant role in understanding several important questions of recent theoretical and experimental studies. Here, by focusing on the localization properties of eigenstates in phase space (by means of Husimi functions), we explore the characterizations of quantum chaos using the statistics of the localization measures, that is the inverse participation ratio and the Wehrl entropy. We consider the paradigmatic kicked top model, which shows a transition to chaos with increasing the kicking strength. We demonstrate that the distributions of the localization measures exhibit a drastic change as the system undergoes the crossover from integrability to chaos. We also show how to identify the signatures of quantum chaos from the central moments of the distributions of localization measures. Moreover, we find that the localization measures in the fully chaotic regime apparently universally exhibit the beta distribution, in agreement with previous studies in the billiard systems and the Dicke model. Our results contribute to a further understanding of quantum chaos and shed light on the usefulness of the statistics of phase space localization measures in diagnosing the presence of quantum chaos, as well as the localization properties of eigenstates in quantum chaotic systems.

7.
Phys Rev E ; 106(5-1): 054203, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36559388

ABSTRACT

The boundary of the lemon billiards is defined by the intersection of two circles of equal unit radius with the distance 2B between their centers, as introduced by Heller and Tomsovic [E. J. Heller and S. Tomsovic, Phys. Today 46, 38 (1993)0031-922810.1063/1.881358]. This paper is a continuation of our recent papers on a classical and quantum ergodic lemon billiard (B=0.5) with strong stickiness effects [C. Lozej et al., Phys. Rev. E 103, 012204 (2021)2470-004510.1103/PhysRevE.103.012204], as well as on the three billiards with a simple mixed-type phase space and no stickiness [C. Lozej et al., Nonlin. Phenom. Complex Syst. 24, 1 (2021)1817-245810.33581/1561-4085-2021-24-1-1-18]. Here we study two classical and quantum lemon billiards, for the cases B=0.1953,0.083, which are mixed-type billiards with a complex structure of phase space, without significant stickiness regions. A preliminary study of their spectra was published recently [ C. Lozej, D. Lukman, and M. Robnik, Physics 3, 888 (2021)10.3390/physics3040055]. We calculate a very large number (10^{6}) of consecutive eigenstates and their Poincaré-Husimi (PH) functions, and analyze their localization properties by studying the entropy localization measure and the normalized inverse participation ratio. We introduce an overlap index, which measures the degree of the overlap of PH functions with classically regular and chaotic regions. We observe the existence of regular states associated with invariant tori and chaotic states associated with the classically chaotic regions, and also the mixed-type states. We show that in accordance with the Berry-Robnik picture and the principle of uniform semiclassical condensation of PH functions, the relative fraction of mixed-type states decreases as a power law with increasing energy, thus, in the strict semiclassical limit, leaving only purely regular and chaotic states. Our approach offers a general phenomenological overview of the structural and localization properties of PH functions in quantum mixed-type Hamiltonian systems.

8.
Entropy (Basel) ; 23(10)2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34682071

ABSTRACT

We present the multifractal analysis of coherent states in kicked top model by expanding them in the basis of Floquet operator eigenstates. We demonstrate the manifestation of phase space structures in the multifractal properties of coherent states. In the classical limit, the classical dynamical map can be constructed, allowing us to explore the corresponding phase space portraits and to calculate the Lyapunov exponent. By tuning the kicking strength, the system undergoes a transition from regularity to chaos. We show that the variation of multifractal dimensions of coherent states with kicking strength is able to capture the structural changes of the phase space. The onset of chaos is clearly identified by the phase-space-averaged multifractal dimensions, which are well described by random matrix theory in a strongly chaotic regime. We further investigate the probability distribution of expansion coefficients, and show that the deviation between the numerical results and the prediction of random matrix theory behaves as a reliable detector of quantum chaos.

9.
Phys Rev E ; 103(1-1): 012204, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33601585

ABSTRACT

We study the classical and quantum ergodic lemon billiard introduced by Heller and Tomsovic in Phys. Today 46(7), 38 (1993)PHTOAD0031-922810.1063/1.881358, for the case B=1/2, which is a classically ergodic system (without a rigorous proof) exhibiting strong stickiness regions around a zero-measure bouncing ball modes. The structure of the classical stickiness regions is uncovered in the S-plots introduced by Lozej [Phys. Rev. E 101, 052204 (2020)10.1103/PhysRevE.101.052204]. A unique classical transport or diffusion time cannot be defined. As a consequence the quantum states are characterized by the following nonuniversal properties: (i) All eigenstates are chaotic but localized as exhibited in the Poincaré-Husimi (PH) functions. (ii) The entropy localization measure A (also the normalized inverse participation ratio) has a nonuniversal distribution, typically bimodal, thus deviating from the beta distribution, the latter one being characteristic of uniformly chaotic systems with no stickiness regions. (iii) The energy-level spacing distribution is Berry-Robnik-Brody (BRB), capturing two effects: the quantally divided phase space (because most of the PH functions are either the inner-ones or the outer-ones, dictated by the classical stickiness, with an effective parameter µ_{1} measuring the size of the inner region bordered by the sticky invariant object, namely, a cantorus), and the localization of PH functions characterized by the level repulsion (Brody) parameter ß. (iv) In the energy range considered (between 20 000 states to 400 000 states above the ground state) the picture (the structure of the eigenstates and the statistics of the energy spectra) is not changing qualitatively, as ß fluctuates around 0.8, while µ_{1} decreases almost monotonically, with increasing energy.

10.
Phys Rev E ; 102(3-1): 032212, 2020 Sep.
Article in English | MEDLINE | ID: mdl-33075891

ABSTRACT

The quantum localization is one of the remarkable phenomena in the studies of quantum chaos and plays an important role in various contexts. Thus, an understanding of the properties of quantum localization is essential. In spite of much effort dedicated to investigating the manifestations of localization in the time-dependent systems, the features of localization in time-independent systems are still less explored, particularly in quantum systems which correspond to the classical systems with smooth Hamiltonian. In this work, we present such a study for a quantum many-body system, namely, the Dicke model. The classical counterpart of the Dicke model is given by a smooth Hamiltonian with two degrees of freedom. We examine the signatures of localization in its chaotic eigenstates. We show that the entropy localization measure, which is defined in terms of the information entropy of Husimi distribution, behaves linearly with the participation number, a measure of the degree of localization of a quantum state. We further demonstrate that the localization measure probability distribution is well described by the ß distribution. We also find that the averaged localization measure is linearly related to the level repulsion exponent, a widely used quantity to characterize the localization in chaotic eigenstates. Our findings extend the previous results in billiards to the quantum many-body system with classical counterpart described by a smooth Hamiltonian, and they indicate that the properties of localized chaotic eigenstates are universal.

11.
Phys Rev E ; 99(2-1): 022209, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30934286

ABSTRACT

We study theoretically and computationally the behavior of the classical and quantum parametrically periodically driven linear oscillator. As a basic paradigm of such a Floquet system we consider the case of the harmonic oscillation of the oscillator frequency, which is convenient to handle theoretically and computationally, while keeping the general features. We derive an explicit analytic formula for the quantum propagator in terms of the classical propagator. Using this, we derive the explicit exact formula for the evolution of the expectation value of the energy starting from an arbitrary normalizable initial state. In the case of the starting pure stationary eigenstate the evolution is exactly the same as for the classical microcanonical ensemble of initial conditions of the same starting energy. We perform a rather complete computational analysis of the system's behavior inside the instability regions (lacunae), where the energy of the oscillator increases exponentially, as well as in the stability regions, and in particular in the vicinity of the (in)stability borders. We confirm also numerically with absolute certainty that the borders of (in)stability regions classically and quantally coincide exactly, in accordance with the theory, which is an important check of the numerical accuracy of computations, and we find a number of important empirical results, especially an equation of the elliptic type describing the rate of exponential energy growth inside the lacunae in terms of other systems' quantities. We believe that our approach and findings are of generic linear type, i.e., applicable in most such linear Floquet systems, and we present a strong motivation for a general theory, classically and quantally.

12.
Phys Rev E ; 100(6-1): 062208, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31962403

ABSTRACT

We study the quantum localization in the chaotic eigenstates of a billiard with mixed-type phase space [J. Phys. A: Math. Gen. 16, 3971 (1983)JPHAC50305-447010.1088/0305-4470/16/17/014; J. Phys. A: Math. Gen. 17, 1049 (1984)JPHAC50305-447010.1088/0305-4470/17/5/027], after separating the regular and chaotic eigenstates, in the regime of slightly distorted circle billiard where the classical transport time in the momentum space is still large enough, although the diffusion is not normal. This is a continuation of our recent papers [Phys. Rev. E 88, 052913 (2013)PLEEE81539-375510.1103/PhysRevE.88.052913; Phys. Rev. E 98, 022220 (2018)2470-004510.1103/PhysRevE.98.022220]. In quantum systems with discrete energy spectrum the Heisenberg time t_{H}=2πℏ/ΔE, where ΔE is the mean level spacing (inverse energy level density), is an important timescale. The classical transport timescale t_{T} (transport time) in relation to the Heisenberg timescale t_{H} (their ratio is the parameter α=t_{H}/t_{T}) determines the degree of localization of the chaotic eigenstates, whose measure A is based on the information entropy. We show that A is linearly related to normalized inverse participation ratio. The localization of chaotic eigenstates is reflected also in the fractional power-law repulsion between the nearest energy levels in the sense that the probability density (level spacing distribution) to find successive levels on a distance S goes like ∝S^{ß} for small S, where 0≤ß≤1, and ß=1 corresponds to completely extended states. We show that the level repulsion exponent ß is empirically a rational function of α, and the mean 〈A〉 (averaged over more than 1000 eigenstates) as a function of α is also well approximated by a rational function. In both cases there is some scattering of the empirical data around the mean curve, which is due to the fact that A actually has a distribution, typically with quite complex structure, but in the limit α→∞ well described by the beta distribution. The scattering is significantly stronger than (but similar as) in the stadium billiard [Nonlin. Phenom. Complex Syst. (Minsk) 21, 225 (2018)] and the kicked rotator [Phys. Rev. E 91, 042904 (2015)PLEEE81539-375510.1103/PhysRevE.91.042904]. Like in other systems, ß goes from 0 to 1 when α goes from 0 to ∞. ß is a function of 〈A〉, similar to the quantum kicked rotator and the stadium billiard.

13.
Phys Rev E ; 98(2-1): 022220, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30253479

ABSTRACT

We perform a detailed study of the chaotic component in mixed-type Hamiltonian systems on the example of a family of billiards [introduced by Robnik in J. Phys. A: Math. Gen. 16, 3971 (1983)JPHAC50305-447010.1088/0305-4470/16/17/014]. The phase space is divided into a grid of cells and a chaotic orbit is iterated a large number of times. The structure of the chaotic component is discerned from the cells visited by the chaotic orbit. The fractal dimension of the border of the chaotic component for various values of the billiard shape parameter is determined with the box-counting method. The cell-filling dynamics is compared to a model of uncorrelated motion, the so-called random model [Robnik et al. J. Phys. A: Math. Gen. 30, L803 (1997)JPHAC50305-447010.1088/0305-4470/30/23/003], and deviations attributed to sticky objects in the phase space are found. The statistics of the number of orbit visits to the cells is analyzed and found to be in agreement with the random model in the long run. The stickiness of the various structures in the phase space is quantified in terms of the cell recurrence times. The recurrence time distributions in a few selected cells as well as the mean and standard deviation of recurrence times for all cells are analyzed. The standard deviation of cell recurrence time is found to be a good quantifier of stickiness on a global scale. Three methods for determining the measure of the chaotic component are compared and the measure is calculated for various values of the billiard shape parameter. Lastly, the decay of correlations and the diffusion of momenta is analyzed.

14.
Phys Rev E ; 97(1-1): 012206, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29448323

ABSTRACT

We perform a detailed numerical study of diffusion in the ɛ stadium of Bunimovich, and propose an empirical model of the local and global diffusion for various values of ɛ with the following conclusions: (i) the diffusion is normal for all values of ɛ (≤0.3) and all initial conditions, (ii) the diffusion constant is a parabolic function of the momentum (i.e., we have inhomogeneous diffusion), (iii) the model describes the diffusion very well including the boundary effects, (iv) the approach to the asymptotic equilibrium steady state is exponential, (v) the so-called random model (Robnik et al., 1997) is confirmed to apply very well, (vi) the diffusion constant extracted from the distribution function in momentum space and the one derived from the second moment agree very well. The classical transport time, an important parameter in quantum chaos, is thus determined.

15.
Article in English | MEDLINE | ID: mdl-25974559

ABSTRACT

We study the quantum kicked rotator in the classically fully chaotic regime K=10 and for various values of the quantum parameter k using Izrailev's N-dimensional model for various N≤3000, which in the limit N→∞ tends to the exact quantized kicked rotator. By numerically calculating the eigenfunctions in the basis of the angular momentum we find that the localization length L for fixed parameter values has a certain distribution; in fact, its inverse is Gaussian distributed, in analogy and in connection with the distribution of finite time Lyapunov exponents of Hamilton systems. However, unlike the case of the finite time Lyapunov exponents, this distribution is found to be independent of N and thus survives the limit N=∞. This is different from the tight-binding model of Anderson localization. The reason is that the finite bandwidth approximation of the underlying Hamilton dynamical system in the Shepelyansky picture [Phys. Rev. Lett. 56, 677 (1986)] does not apply rigorously. This observation explains the strong fluctuations in the scaling laws of the kicked rotator, such as the entropy localization measure as a function of the scaling parameter Λ=L/N, where L is the theoretical value of the localization length in the semiclassical approximation. These results call for a more refined theory of the localization length in the quantum kicked rotator and in similar Floquet systems, where we must predict not only the mean value of the inverse of the localization length L but also its (Gaussian) distribution, in particular the variance. In order to complete our studies we numerically analyze the related behavior of finite time Lyapunov exponents in the standard map and of the 2×2 transfer matrix formalism. This paper extends our recent work [Phys. Rev. E 87, 062905 (2013)].


Subject(s)
Models, Theoretical , Quantum Theory , Statistics as Topic
16.
Article in English | MEDLINE | ID: mdl-25353543

ABSTRACT

We perform an extensive and detailed analysis of the generalized diffusion processes in deterministic area preserving maps with noncompact phase space, exemplified by the standard map, with the special emphasis on understanding the anomalous diffusion arising due to the accelerator modes. The accelerator modes and their immediate neighborhood undergo ballistic transport in phase space, and also the greater vicinity of them is still much affected ("dragged") by them, giving rise to the non-Gaussian (accelerated) diffusion. The systematic approach rests upon the following applications: the GALI method to detect the regular and chaotic regions and thus to describe in detail the structure of the phase space, the description of the momentum distribution in terms of the Lévy stable distributions, and the numerical calculation of the diffusion exponent and of the corresponding diffusion constant. We use this approach to analyze in detail and systematically the standard map at all values of the kick parameter K, up to K = 70. All complex features of the anomalous diffusion are well understood in terms of the role of the accelerator modes, mainly of period 1 at large K ≥ 2π, but also of higher periods (2,3,4,...) at smaller values of K ≤ 2π.

17.
Article in English | MEDLINE | ID: mdl-25019871

ABSTRACT

We study the one-dimensional Hamiltonian systems and their statistical behavior, assuming the initial microcanonical distribution and describing its change under a parametric kick, which by definition means a discontinuous jump of a control parameter of the system. Following a previous work by Papamikos and Robnik [J. Phys. A: Math. Theor. 44, 315102 (2011)], we specifically analyze the change of the adiabatic invariant (the action) of the system under a parametric kick: A conjecture has been put forward that the change of the action at the mean energy always increases, which means, for the given statistical ensemble, that the Gibbs entropy in the mean increases. By means of a detailed analysis of a great number of case studies, we show that the conjecture largely is satisfied, except if either the potential is not smooth enough or if the energy is too close to a stationary point of the potential (separatrix in the phase space). Very fast changes in a time-dependent system quite generally can be well described by such a picture and by the approximation of a parametric kick, if the change of the parameter is sufficiently fast and takes place on the time scale of less than one oscillation period. We discuss our work in the context of the statistical mechanics in the sense of Gibbs.


Subject(s)
Models, Statistical , Entropy
18.
Article in English | MEDLINE | ID: mdl-24329337

ABSTRACT

The phenomenon of quantum localization in classically chaotic eigenstates is one of the main issues in quantum chaos (or wave chaos), and thus plays an important role in general quantum mechanics or even in general wave mechanics. In this work we propose two different localization measures characterizing the degree of quantum localization, and study their relation to another fundamental aspect of quantum chaos, namely the (energy) spectral statistics. Our approach and method is quite general, and we apply it to billiard systems. One of the signatures of the localization of chaotic eigenstates is a fractional power-law repulsion between the nearest energy levels in the sense that the probability density to find successive levels on a distance S goes like [proportionality]S(ß) for small S, where 0≤ß≤1, and ß=1 corresponds to completely extended states. We show that there is a clear functional relation between the exponent ß and the two different localization measures. One is based on the information entropy and the other one on the correlation properties of the Husimi functions. We show that the two definitions are surprisingly linearly equivalent. The approach is applied in the case of a mixed-type billiard system [M. Robnik, J. Phys. A: Math. Gen. 16, 3971 (1983)], in which the separation of regular and chaotic eigenstates is performed.

19.
Article in English | MEDLINE | ID: mdl-23848746

ABSTRACT

We study the kicked rotator in the classically fully chaotic regime using Izrailev's N-dimensional model for various N≤4000, which in the limit N→∞ tends to the quantized kicked rotator. We do treat not only the case K=5, as studied previously, but also many different values of the classical kick parameter 5≤K≤35 and many different values of the quantum parameter kε[5,60]. We describe the features of dynamical localization of chaotic eigenstates as a paradigm for other both time-periodic and time-independent (autonomous) fully chaotic or/and mixed-type Hamilton systems. We generalize the scaling variable Λ=l(∞)/N to the case of anomalous diffusion in the classical phase space by deriving the localization length l(∞) for the case of generalized classical diffusion. We greatly improve the accuracy and statistical significance of the numerical calculations, giving rise to the following conclusions: (1) The level-spacing distribution of the eigenphases (or quasienergies) is very well described by the Brody distribution, systematically better than by other proposed models, for various Brody exponents ß(BR). (2) We study the eigenfunctions of the Floquet operator and characterize their localization properties using the information entropy measure, which after normalization is given by ß(loc) in the interval [0,1]. The level repulsion parameters ß(BR) and ß(loc) are almost linearly related, close to the identity line. (3) We show the existence of a scaling law between ß(loc) and the relative localization length Λ, now including the regimes of anomalous diffusion. The above findings are important also for chaotic eigenstates in time-independent systems [Batistic and Robnik, J. Phys. A: Math. Gen. 43, 215101 (2010); arXiv:1302.7174 (2013)], where the Brody distribution is confirmed to a very high degree of precision for dynamically localized chaotic eigenstates, even in the mixed-type systems (after separation of regular and chaotic eigenstates).

20.
Phys Rev E Stat Nonlin Soft Matter Phys ; 83(2 Pt 2): 026202, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21405891

ABSTRACT

Some dynamical properties of time-dependent driven elliptical-shaped billiards are studied. It was shown that for conservative time-dependent dynamics the model exhibits Fermi acceleration [Phys. Rev. Lett. 100, 014103 (2008).] On the other hand, it was observed that damping coefficients upon collisions suppress such a phenomenon [Phys. Rev. Lett. 104, 224101 (2010)]. Here, we consider a dissipative model under the presence of in-flight dissipation due to a drag force which is assumed to be proportional to the square of the velocity of the particle. Our results reinforce that dissipation leads to a phase transition from unlimited to limited energy growth. The behavior of the average velocity is described using scaling arguments.

SELECTION OF CITATIONS
SEARCH DETAIL
...