Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Bioeng ; 108(2): 313-21, 2011 Feb.
Article in English | MEDLINE | ID: mdl-20872819

ABSTRACT

Polybrominated diphenyl ethers (PBDEs) are a class of flame retardants that have been widely used in consumer products, but that are problematic because of their environmental persistence and endocrine-disrupting properties. To date, very little is known about PBDE degradation by aerobic microorganisms and the enzymes involved in PBDE transformation. Resting cells of the polychlorinated biphenyl-degrading actinomycete, Rhodococcus jostii RHA1, depleted nine mono- through penta-BDEs in separate assays. Extensive depletion of PBDEs occurred with cells grown on biphenyl, ethylbenzene, propane, or styrene, whereas very limited depletion occurred with cells grown on pyruvate or benzoate. In RHA1, expression of bphAa encoding biphenyl dioxygenase (BPDO) and etbAa1 and etbAc encoding ethylbenzene dioxygenase (EBDO) was induced 30- to 3,000-fold during growth on the substrates that supported PBDE depletion. The BPDO and EBDO enzymes had gene expression profiles that matched the PBDE-depletion profiles exhibited by RHA1 grown on different substrates. Using the non-PBDE-degrading bacterium Rhodococcus erythropolis as a host, two recombinant strains were developed by inserting the eth and bph genes of RHA1, respectively. The resultant EBDO extensively depleted mono- through penta-BDEs, while the BPDO depleted only mono-, di-, and one tetra-BDE. A dihydroxylated-BDE was detected as the primary metabolite of 4-bromodiphenyl ether in both recombinant strains. These results indicate that although both dioxygenases are capable of transforming PBDEs, EBDO more potently transforms the highly brominated congeners. The availability of substrates or inducing compounds can markedly affect total PBDE removal as well as patterns of removal of individual congeners.


Subject(s)
Dioxygenases/metabolism , Halogenated Diphenyl Ethers/metabolism , Rhodococcus/enzymology , Biotransformation , Flame Retardants/metabolism , Gene Expression Profiling , Gene Expression Regulation, Enzymologic , Rhodococcus/growth & development
2.
Environ Toxicol Chem ; 29(4): 770-8, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20821505

ABSTRACT

A model was used to predict the photodebromination of the BDE-203, 197, 196, and 153, the major components of the octa-polybrominated diphenyl ether (PBDE) technical mixture, as well as BDE-47, and the predicted results were compared to the experimental results. The predicted reaction time profiles of the photodebromination products correlate well with the experimental results. In addition, the slope of the linear regression between the measured product concentrations of the first step of the photodebromination products and their enthalpies of formation was found to be close to their theoretical value. The photodebromination results of the octa-BDE technical mixture were compared with anaerobic microbial debromination results and were found to be the same in both experiments. The debromination pathways of technical octa-BDE mixture were identified and BDE-154, 99, 47, and 31 were found to be the most abundant hexa-, penta-, tetra-, and tri-BDE debromination products, respectively. In addition to photodebromination and anaerobic biodebromination, the model prediction was also compared to the zero-valent iron reduction of BDE-209, 100, and 47 and the same debromination products were observed. Good correlation was observed between the photodebromination rate constants of fifteen PBDE congeners and their calculated lowest unoccupied molecular orbital (LUMO) energies, indicating that PBDE photodebromination is caused by electron transfer. Furthermore, the rate constants for the three different PBDE debromination processes are controlled by C-Br bond dissociation energy. With the model from the present study, the major debromination products for any PBDE congener released into the environment can be predicted.


Subject(s)
Bacteria/metabolism , Halogenated Diphenyl Ethers/chemistry , Halogenated Diphenyl Ethers/metabolism , Iron/chemistry , Anaerobiosis , Oxidation-Reduction , Photochemistry
3.
Environ Sci Technol ; 43(15): 5705-11, 2009 Aug 01.
Article in English | MEDLINE | ID: mdl-19731666

ABSTRACT

Polybrominated diphenyl ethers (PBDEs) are flame retardants that have been used in consumer products and furniture for three decades. Currently, very little is known about their fate in the environment and specifically about their susceptibility to aerobic biotransformation. Here, we investigated the ability of the polychlorinated biphenyl (PCB) degrading bacteria Rhodococcus jostii RHA1 and Burkholderia xenovorans LB400 to transform mono- through hexa-BDEs at ppb levels. We also tested the PBDE transforming abilities of the related strain Rhodococcus sp. RR1 and the ether-degrading Pseudonocardia dioxanivorans CB1190. The two PCB-degrading strains transformed all of the mono- through penta-BDEs and strain LB400 transformed one of the hexa-BDEs. The extent of transformation was inversely proportional to the degree of bromination. Strains RR1 and CB1190 were only able to transform the less brominated mono- and di-BDE congeners. RHA1 released stoichiometric quantities of bromide while transforming mono- and tetra-BDE congeners. LB400 instead converted most of a mono-BDE to a hydroxylated mono-BDE. This is the first report of aerobic transformation of tetra-, penta,- and hexa-BDEs as well as the first report of stoichiometric release of bromide during PBDE transformation.


Subject(s)
Biodegradation, Environmental , Halogenated Diphenyl Ethers/chemistry , Biotransformation , Bromides/chemistry , Burkholderia/metabolism , Chlorine/chemistry , Environment , Environmental Pollutants , Ethers/chemistry , Gas Chromatography-Mass Spectrometry/methods , Halogenated Diphenyl Ethers/metabolism , Models, Statistical , Rhodococcus/metabolism , Time Factors
4.
Environ Toxicol Chem ; 27(12): 2427-35, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18613751

ABSTRACT

With the phaseout of the manufacture of some polybrominated diphenyl ether (PBDE) formulations, namely penta-brominated diphenyl ether (BDE) and octa-BDE, and the continued use of the deca-BDE formulation, it is important to be able to predict the photodegradation of the more highly brominated congeners. A model was developed and validated to predict the products and their relative concentrations from the photodegradation of PBDEs. The enthalpies of formation of the 209 PBDE congeners were calculated, and the relative reaction rate constants were obtained. The predicted reaction rate constants for PBDEs show linear correlation with previous experimental results. Because of their large volume use, their presence in the environment, and/or importance in the photodegradation of the deca-BDE formulation, BDE-209, BDE-184, BDE-100, and BDE-99 were chosen for further ultraviolet photodegradation experiments in isooctane. The photodegradation model successfully predicted the products of the photochemical reactions of PBDEs in experimental studies. A gas chromatography retention time model for PBDEs was developed using a multiple linear regression analysis and, together with the photodegradation model and additional PBDE standards, provided a way to identify unknown products from PBDE photodegradation experiments. Based on the results of the photodegradation experiments, as well as the model predictions, it appears that the photodegradation of PBDEs is a first-order reaction and, further, that the rate-determining step is the stepwise loss of bromine. Our results suggest that, based on photodegradation, over time, BDE-99 will remain the most abundant penta-BDE, while BDE-49 and BDE-66 will increase greatly and will be comparable in abundance to BDE-47.


Subject(s)
Polybrominated Biphenyls/chemistry , Ethers , Models, Chemical , Photochemistry , Thermodynamics
5.
Environ Sci Technol ; 42(8): 2845-52, 2008 Apr 15.
Article in English | MEDLINE | ID: mdl-18497133

ABSTRACT

The debromination pathways of seven polybrominated diphenyl ethers (PBDEs) by three different cultures of anaerobic dehalogenating bacteria were investigated using comprehensive two-dimensional gas chromatography (GC x GC). The congeners analyzed were the five major components of the industrially used octa-BDE mixture (octa-BDEs 196, 203, and 197, hepta-BDE 183, and hexa-BDE 153) as well as the two most commonly detected PBDEs in the environment, penta-BDE 99 and tetra-BDE 47. Among the dehalogenating cultures evaluated in this study were a trichloroethene-enriched consortium containing multiple Dehalococcoides species, and two pure cultures, Dehalobacter restrictus PER-K23 and Desulfitobacterium hafniense PCP-1. PBDE samples were analyzed by GC x GC coupled to an electron capture detector to maximize separation and identification of the product congeners. All studied congeners were debrominated to some extent by the three cultures and all exhibited similar debromination pathways with preferential removal of para and meta bromines. Debromination of the highly brominated congeners was extremely slow, with usually less than 10% of nM concentrations of PBDEs transformed after three months. In contrast, debromination of the lesser brominated congeners, such as penta 99 and tetra 47, was faster, with some cultures completely debrominating nM levels of tetra 47 within weeks.


Subject(s)
Bacteria/metabolism , Environmental Pollutants/metabolism , Flame Retardants/metabolism , Phenyl Ethers/metabolism , Polybrominated Biphenyls/metabolism , Bromine/metabolism
6.
Environ Sci Technol ; 40(14): 4429-34, 2006 Jul 15.
Article in English | MEDLINE | ID: mdl-16903281

ABSTRACT

Polybrominated diphenyl ethers (PBDEs) are a class of widely used flame retardants that have recently been detected in environmental samples, diverse biota, human blood serum, and breast milk at exponentially increasing concentrations. Currently, little is known about the fate of these compounds, and in particular, about the microbial potential to degrade them. In this study, debromination of deca-BDE and an octa-BDE mixture is demonstrated with anaerobic bacteria including Sulfurospirillum multivorans and Dehalococcoides species. Hepta- and octa-BDEs were produced by the S. multivorans culture when it was exposed to deca-BDE, although no debromination was observed with the octa-BDE mixture. In contrast, a variety of hepta- through di-BDEs were produced by Dehalococcoides-containing cultures exposed to an octa-BDE mixture, despite the fact that none of these cultures could debrominate deca-BDE. The more toxic hexa-154, penta-99, tetra-49, and tetra-47 were identified among the debromination products. Because the penta-BDE congeners are among the most toxic PBDEs, debromination of the higher congeners to more toxic products in the environment could have profound implications for public health and for the regulation of these compounds.


Subject(s)
Bacteria/metabolism , Bromine/metabolism , Polybrominated Biphenyls/metabolism , Base Sequence , Chromatography, Gas , DNA Primers , Ethers , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...