Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Glob Chang Biol ; 29(11): 3019-3038, 2023 06.
Article in English | MEDLINE | ID: mdl-36811356

ABSTRACT

Climate change is altering hydrological cycles globally, and in Mediterranean (med-) climate regions it is causing the drying of river flow regimes, including the loss of perennial flows. Water regime exerts a strong influence over stream assemblages, which have developed over geological timeframes with the extant flow regime. Consequently, sudden drying in formerly perennial streams is expected to have large, negative impacts on stream fauna. We compared contemporary (2016/17) macroinvertebrate assemblages of formerly perennial streams that became intermittently flowing (since the early 2000s) to assemblages recorded in the same streams by a study conducted pre-drying (1981/82) in the med-climate region of southwestern Australia (the Wungong Brook catchment, SWA), using a multiple before-after, control-impact design. Assemblage composition in the stream reaches that remained perennial changed very little between the studies. In contrast, recent intermittency had a profound effect on species composition in streams impacted by drying, including the extirpation of nearly all Gondwanan relictual insect species. New species arriving at intermittent streams tended to be widespread, resilient species including desert-adapted taxa. Intermittent streams also had distinct species assemblages, due in part to differences in their hydroperiods, allowing the establishment of distinct winter and summer assemblages in streams with longer-lived pools. The remaining perennial stream is the only refuge for ancient Gondwanan relict species and the only place in the Wungong Brook catchment where many of these species still persist. The fauna of SWA upland streams is becoming homogenised with that of the wider Western Australian landscape, as drought-tolerant, widespread species replace local endemics. Flow regime drying caused large, in situ alterations to stream assemblage composition and demonstrates the threat posed to relictual stream faunas in regions where climates are drying.


Subject(s)
Aquatic Organisms , Invertebrates , Rivers , Animals , Australia , Ecosystem , Environmental Monitoring , Global Warming
2.
Nature ; 610(7932): 513-518, 2022 10.
Article in English | MEDLINE | ID: mdl-36224387

ABSTRACT

As the United Nations develops a post-2020 global biodiversity framework for the Convention on Biological Diversity, attention is focusing on how new goals and targets for ecosystem conservation might serve its vision of 'living in harmony with nature'1,2. Advancing dual imperatives to conserve biodiversity and sustain ecosystem services requires reliable and resilient generalizations and predictions about ecosystem responses to environmental change and management3. Ecosystems vary in their biota4, service provision5 and relative exposure to risks6, yet there is no globally consistent classification of ecosystems that reflects functional responses to change and management. This hampers progress on developing conservation targets and sustainability goals. Here we present the International Union for Conservation of Nature (IUCN) Global Ecosystem Typology, a conceptually robust, scalable, spatially explicit approach for generalizations and predictions about functions, biota, risks and management remedies across the entire biosphere. The outcome of a major cross-disciplinary collaboration, this novel framework places all of Earth's ecosystems into a unifying theoretical context to guide the transformation of ecosystem policy and management from global to local scales. This new information infrastructure will support knowledge transfer for ecosystem-specific management and restoration, globally standardized ecosystem risk assessments, natural capital accounting and progress on the post-2020 global biodiversity framework.


Subject(s)
Conservation of Natural Resources , Ecosystem , Environmental Policy , Biodiversity , Biota , Conservation of Natural Resources/legislation & jurisprudence , Conservation of Natural Resources/methods , Environmental Policy/legislation & jurisprudence , Environmental Policy/trends , Goals , United Nations , Animals
3.
Glob Chang Biol ; 27(23): 6263-6279, 2021 12.
Article in English | MEDLINE | ID: mdl-34534383

ABSTRACT

Many regions across the globe are shifting to more arid climates. For shallow lakes, decreasing rainfall volume and timing, changing regional wind patterns and increased evaporation rates alter water regimes so that dry periods occur more frequently and for longer. Drier conditions may affect fauna directly and indirectly through altered physicochemical conditions in lakes. Although many studies have predicted negative effects of such changes on aquatic biodiversity, empirical studies demonstrating these effects are rare. Global warming has caused severe climatic drying in southwestern Australia since the 1970s, so we aimed to determine whether lakes in this region showed impacts on lake hydroperiod, water quality, and α, ß and γ diversity of lake invertebrates from 1998 to 2011. Seventeen lakes across a range of salinities were sampled biennially in spring in the Wheatbelt and Great Southern regions of Western Australia. Multivariate analyses were used to identify changes in α, ß and γ diversity and examine patterns in physicochemical data. Salinity and average rainfall partially explained patterns in invertebrate richness and assemblage composition. Climatic drying was associated with significant declines in lake depth, increased frequency of dry periods, and reduced α and γ diversity (γ declined from ~300 to ~100 taxa from 1998 to 2011 in the 17 wetlands). In contrast, ß diversity remained consistently high, because each lake retained a distinct fauna. Mean α diversity per-lake declined both in lakes that dried and lakes that did not dry out, but lakes which retained a greater proportion of their maximum depth retained more α diversity. Accumulated losses in α diversity caused the decline in γ diversity likely through shrinking habitat area, fewer stepping stones for dispersal and loss of specific habitat types. Biodiversity loss is thus likely from lakes in drying regions globally. Management actions will need to sustain water depth in lakes to prevent biodiversity loss.


Subject(s)
Invertebrates , Lakes , Animals , Biodiversity , Ecosystem , Wetlands
4.
Glob Chang Biol ; 27(15): 3547-3564, 2021 08.
Article in English | MEDLINE | ID: mdl-33949046

ABSTRACT

Recent climate change is altering the timing, duration and volume of river and stream flows globally, and in many regions, perennially flowing rivers and streams are drying and switching to intermittent flows. Profound impacts on aquatic biota are becoming apparent, due in part to the strong influence of flow regime on the evolution of life history. We made predictions of life-history responses for 13 common aquatic invertebrate species (four caddisflies, five mayflies, two stoneflies, a dragonfly and an amphipod), to recent flow regime change in Australian mediterranean climate streams, based on historic studies in the same streams. Size distributions, phenology, voltinism and synchrony were compared, revealing five main responses. More than half of the species were restricted to perennially flowing streams and were absent from those that had switched to intermittent flows (including all four caddisfly species). These formerly common species are at risk of extinction as climate change progresses. Two mayfly species had divergent responses in voltinism and synchrony, and one relied on drought micro-refuges to persist. One stonefly species changed development timing to suit the new flow regime, and the amphipod species retreated to subterranean refuges. Two formerly common species were not detected at all during 2016-2017. In addition, a new mayfly species and a caddisfly species proliferated under new flow regimes, because they had life histories suited to brief hydroperiods. Importantly, previous life history rarely predicted species' actual responses to climate-driven flow regime change, raising doubts about the veracity of predictions based on species traits. This is because a species' potential for flexible phenology or growth rate is not necessarily indicated by life-history traits.


Subject(s)
Ephemeroptera , Odonata , Animals , Australia , Climate Change , Ecosystem , Insecta , Rivers
5.
PLoS One ; 9(3): e91925, 2014.
Article in English | MEDLINE | ID: mdl-24647407

ABSTRACT

In dry climate zones, headwater streams are often regulated for water extraction causing intermittency in perennial streams and prolonged drying in intermittent streams. Regulation thereby reduces aquatic habitat downstream of weirs that also form barriers to migration by stream fauna. Environmental flow releases may restore streamflow in rivers, but are rarely applied to headwaters. We sampled fish and crayfish in four regulated headwater streams before and after the release of summer-autumn environmental flows, and in four nearby unregulated streams, to determine whether their abundances increased in response to flow releases. Historical data of fish and crayfish occurrence spanning a 30 year period was compared with contemporary data (electrofishing surveys, Victoria Range, Australia; summer 2008 to summer 2010) to assess the longer-term effects of regulation and drought. Although fish were recorded in regulated streams before 1996, they were not recorded in the present study upstream or downstream of weirs despite recent flow releases. Crayfish (Geocharax sp. nov. 1) remained in the regulated streams throughout the study, but did not become more abundant in response to flow releases. In contrast, native fish (Gadopsis marmoratus, Galaxias oliros, Galaxias maculatus) and crayfish remained present in unregulated streams, despite prolonged drought conditions during 2006-2010, and the assemblages of each of these streams remained essentially unchanged over the 30 year period. Flow release volumes may have been too small or have operated for an insufficient time to allow fish to recolonise regulated streams. Barriers to dispersal may also be preventing recolonisation. Indefinite continuation of annual flow releases, that prevent the unnatural cessation of flow caused by weirs, may eventually facilitate upstream movement of fish and crayfish in regulated channels; but other human-made dispersal barriers downstream need to be identified and ameliorated, to allow native fish to fulfil their life cycles in these headwater streams.


Subject(s)
Astacoidea/physiology , Fishes/physiology , Rivers , Water Movements , Animals , Biodiversity , Seasons , Species Specificity , Victoria
6.
Oecologia ; 107(3): 411-420, 1996 Aug.
Article in English | MEDLINE | ID: mdl-28307270

ABSTRACT

Invertebrate algal grazer densities were manipulated in a temperate river to discover the impact of differences in riffle-scale architectural complexity on the strength of the trophic interaction between grazers and epilithic algae. Animal densities were manipulated by manual removal in architecturally complex boulder-cobble riffles and simpler bedrock riffles, with the complexity of smaller-scale architecture held constant. Responses in algal density were recorded before and after a month of manipulations, together with grazer colonization rate and body sizes. The experiment was carried out in winter and again in summer. The interaction between grazers and algae differed between habitats and seasons. In winter, when algae were growing, the more complex rifflescale architecture in the boulder-cobble riffles created a refuge from grazing for algae. This was probably the result of the movement abilities of the grazers interacting with habitat architecture, and potentially also due to the control of predatory fish densities by habitat architecture resulting in greater predation pressure on grazers in boulder-cobble riffles. Therefore the impact of highly complex riffle-scale architecture was to weaken the strength of the trophic interaction between algae and their grazers by reducing grazer densities, while potentially strengthening the trophic interaction between grazers and their fish predators.

SELECTION OF CITATIONS
SEARCH DETAIL
...