Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2023 May 05.
Article in English | MEDLINE | ID: mdl-37066422

ABSTRACT

Deciphering the connectome, the ensemble of synaptic connections that underlie brain function is a central goal of neuroscience research. The trans-Tango genetic approach, initially developed for anterograde transsynaptic tracing in Drosophila, can be used to map connections between presynaptic and postsynaptic partners and to drive gene expression in target neurons. Here, we describe the successful adaptation of trans-Tango to visualize neural connections in a living vertebrate nervous system, that of the zebrafish. Connections were validated between synaptic partners in the larval retina and brain. Results were corroborated by functional experiments in which optogenetic activation of retinal ganglion cells elicited responses in neurons of the optic tectum, as measured by trans-Tango-dependent expression of a genetically encoded calcium indicator. Transsynaptic signaling through trans-Tango reveals predicted as well as previously undescribed synaptic connections, providing a valuable in vivo tool to monitor and interrogate neural circuits over time.

2.
Neuron ; 110(12): 1894-1898, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35709696

ABSTRACT

How do neurons and networks of neurons interact spatially? Here, we overview recent discoveries revealing how spatial dynamics of spiking and postsynaptic activity efficiently expose and explain fundamental brain and brainstem mechanisms behind detection, perception, learning, and behavior.


Subject(s)
Models, Neurological , Neurons , Action Potentials/physiology , Brain/physiology , Learning , Neurons/physiology
3.
Curr Opin Neurobiol ; 73: 102517, 2022 04.
Article in English | MEDLINE | ID: mdl-35217311

ABSTRACT

State-dependent computation is key to cognition in both biological and artificial systems. Alan Turing recognized the power of stateful computation when he created the Turing machine with theoretically infinite computational capacity in 1936. Independently, by 1950, ethologists such as Tinbergen and Lorenz also began to implicitly embed rudimentary forms of state-dependent computation to create qualitative models of internal drives and naturally occurring animal behaviors. Here, we reformulate core ethological concepts in explicitly dynamical systems terms for stateful computation. We examine, based on a wealth of recent neural data collected during complex innate behaviors across species, the neural dynamics that determine the temporal structure of internal states. We will also discuss the degree to which the brain can be hierarchically partitioned into nested dynamical systems and the need for a multi-dimensional state-space model of the neuromodulatory system that underlies motivational and affective states.


Subject(s)
Brain , Ethology , Animals , Behavior, Animal , Male
4.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Article in English | MEDLINE | ID: mdl-35031564

ABSTRACT

Defining the structural and functional changes in the nervous system underlying learning and memory represents a major challenge for modern neuroscience. Although changes in neuronal activity following memory formation have been studied [B. F. Grewe et al., Nature 543, 670-675 (2017); M. T. Rogan, U. V. Stäubli, J. E. LeDoux, Nature 390, 604-607 (1997)], the underlying structural changes at the synapse level remain poorly understood. Here, we capture synaptic changes in the midlarval zebrafish brain that occur during associative memory formation by imaging excitatory synapses labeled with recombinant probes using selective plane illumination microscopy. Imaging the same subjects before and after classical conditioning at single-synapse resolution provides an unbiased mapping of synaptic changes accompanying memory formation. In control animals and animals that failed to learn the task, there were no significant changes in the spatial patterns of synapses in the pallium, which contains the equivalent of the mammalian amygdala and is essential for associative learning in teleost fish [M. Portavella, J. P. Vargas, B. Torres, C. Salas, Brain Res. Bull 57, 397-399 (2002)]. In zebrafish that formed memories, we saw a dramatic increase in the number of synapses in the ventrolateral pallium, which contains neurons active during memory formation and retrieval. Concurrently, synapse loss predominated in the dorsomedial pallium. Surprisingly, we did not observe significant changes in the intensity of synaptic labeling, a proxy for synaptic strength, with memory formation in any region of the pallium. Our results suggest that memory formation due to classical conditioning is associated with reciprocal changes in synapse numbers in the pallium.


Subject(s)
Larva/physiology , Memory/physiology , Neurons/physiology , Synapses/physiology , Zebrafish/physiology , Amygdala/physiology , Animals , Conditioning, Classical/physiology , Learning/physiology
5.
Cell ; 180(3): 536-551.e17, 2020 02 06.
Article in English | MEDLINE | ID: mdl-31955849

ABSTRACT

Goal-directed behavior requires the interaction of multiple brain regions. How these regions and their interactions with brain-wide activity drive action selection is less understood. We have investigated this question by combining whole-brain volumetric calcium imaging using light-field microscopy and an operant-conditioning task in larval zebrafish. We find global, recurring dynamics of brain states to exhibit pre-motor bifurcations toward mutually exclusive decision outcomes. These dynamics arise from a distributed network displaying trial-by-trial functional connectivity changes, especially between cerebellum and habenula, which correlate with decision outcome. Within this network the cerebellum shows particularly strong and predictive pre-motor activity (>10 s before movement initiation), mainly within the granule cells. Turn directions are determined by the difference neuroactivity between the ipsilateral and contralateral hemispheres, while the rate of bi-hemispheric population ramping quantitatively predicts decision time on the trial-by-trial level. Our results highlight a cognitive role of the cerebellum and its importance in motor planning.


Subject(s)
Cerebellum/physiology , Decision Making/physiology , Reaction Time/physiology , Zebrafish/physiology , Animals , Behavior, Animal/physiology , Brain Mapping/methods , Cerebrum/physiology , Cognition/physiology , Conditioning, Operant/physiology , Goals , Habenula/physiology , Hot Temperature , Larva/physiology , Motor Activity/physiology , Movement , Neurons/physiology , Psychomotor Performance/physiology , Rhombencephalon/physiology
6.
Nature ; 577(7789): 239-243, 2020 01.
Article in English | MEDLINE | ID: mdl-31853063

ABSTRACT

The brain has persistent internal states that can modulate every aspect of an animal's mental experience1-4. In complex tasks such as foraging, the internal state is dynamic5-8. Caenorhabditis elegans alternate between local search and global dispersal5. Rodents and primates exhibit trade-offs between exploitation and exploration6,7. However, fundamental questions remain about how persistent states are maintained in the brain, which upstream networks drive state transitions and how state-encoding neurons exert neuromodulatory effects on sensory perception and decision-making to govern appropriate behaviour. Here, using tracking microscopy to monitor whole-brain neuronal activity at cellular resolution in freely moving zebrafish larvae9, we show that zebrafish spontaneously alternate between two persistent internal states during foraging for live prey (Paramecia). In the exploitation state, the animal inhibits locomotion and promotes hunting, generating small, localized trajectories. In the exploration state, the animal promotes locomotion and suppresses hunting, generating long-ranging trajectories that enhance spatial dispersion. We uncover a dorsal raphe subpopulation with persistent activity that robustly encodes the exploitation state. The exploitation-state-encoding neurons, together with a multimodal trigger network that is associated with state transitions, form a stochastically activated nonlinear dynamical system. The activity of this oscillatory network correlates with a global retuning of sensorimotor transformations during foraging that leads to marked changes in both the motivation to hunt for prey and the accuracy of motor sequences during hunting. This work reveals an important hidden variable that shapes the temporal structure of motivation and decision-making.


Subject(s)
Behavior, Animal , Brain/physiology , Zebrafish/physiology , Animals , Decision Making , Dorsal Raphe Nucleus/cytology , Dorsal Raphe Nucleus/physiology , Larva/physiology , Microscopy , Motivation , Neuroimaging , Neurons/cytology , Paramecium , Predatory Behavior , Principal Component Analysis , Time Factors , Zebrafish/growth & development
7.
Nat Commun ; 10(1): 4691, 2019 10 16.
Article in English | MEDLINE | ID: mdl-31619681

ABSTRACT

Multiple scattering and absorption limit the depth at which biological tissues can be imaged with light. In thick unlabeled specimens, multiple scattering randomizes the phase of the field and absorption attenuates light that travels long optical paths. These obstacles limit the performance of transmission imaging. To mitigate these challenges, we developed an epi-illumination gradient light interference microscope (epi-GLIM) as a label-free phase imaging modality applicable to bulk or opaque samples. Epi-GLIM enables studying turbid structures that are hundreds of microns thick and otherwise opaque to transmitted light. We demonstrate this approach with a variety of man-made and biological samples that are incompatible with imaging in a transmission geometry: semiconductors wafers, specimens on opaque and birefringent substrates, cells in microplates, and bulk tissues. We demonstrate that the epi-GLIM data can be used to solve the inverse scattering problem and reconstruct the tomography of single cells and model organisms.


Subject(s)
Microscopy, Interference/instrumentation , Animals , Brain , HeLa Cells , Hep G2 Cells , Humans , Imaging, Three-Dimensional , Larva , Mice , Microscopy, Interference/methods , Neurons , Optical Imaging , Quartz , Rats , Semiconductors , Tendons , Zebrafish
8.
Neuron ; 98(4): 817-831.e6, 2018 05 16.
Article in English | MEDLINE | ID: mdl-29731253

ABSTRACT

Thermosensation provides crucial information, but how temperature representation is transformed from sensation to behavior is poorly understood. Here, we report a preparation that allows control of heat delivery to zebrafish larvae while monitoring motor output and imaging whole-brain calcium signals, thereby uncovering algorithmic and computational rules that couple dynamics of heat modulation, neural activity and swimming behavior. This approach identifies a critical step in the transformation of temperature representation between the sensory trigeminal ganglia and the hindbrain: A simple sustained trigeminal stimulus representation is transformed into a representation of absolute temperature as well as temperature changes in the hindbrain that explains the observed motor output. An activity constrained dynamic circuit model captures the most prominent aspects of these sensori-motor transformations and predicts both behavior and neural activity in response to novel heat stimuli. These findings provide the first algorithmic description of heat processing from sensory input to behavioral output.


Subject(s)
Behavior, Animal , Calcium Signaling , Hot Temperature , Neurons/metabolism , Rhombencephalon/metabolism , Swimming , Thermosensing/physiology , Trigeminal Ganglion/metabolism , Algorithms , Animals , Brain/diagnostic imaging , Brain/metabolism , Brain/physiology , Functional Neuroimaging , Larva , Neural Networks, Computer , Neural Pathways , Neurons/physiology , Rhombencephalon/diagnostic imaging , Rhombencephalon/physiology , Trigeminal Ganglion/diagnostic imaging , Trigeminal Ganglion/physiology , Zebrafish
9.
J Neurosci ; 37(47): 11353-11365, 2017 11 22.
Article in English | MEDLINE | ID: mdl-28972121

ABSTRACT

Within reflex circuits, specific anatomical projections allow central neurons to relay sensations to effectors that generate movements. A major challenge is to relate anatomical features of central neural populations, such as asymmetric connectivity, to the computations the populations perform. To address this problem, we mapped the anatomy, modeled the function, and discovered a new behavioral role for a genetically defined population of central vestibular neurons in rhombomeres 5-7 of larval zebrafish. First, we found that neurons within this central population project preferentially to motoneurons that move the eyes downward. Concordantly, when the entire population of asymmetrically projecting neurons was stimulated collectively, only downward eye rotations were observed, demonstrating a functional correlate of the anatomical bias. When these neurons are ablated, fish failed to rotate their eyes following either nose-up or nose-down body tilts. This asymmetrically projecting central population thus participates in both upward and downward gaze stabilization. In addition to projecting to motoneurons, central vestibular neurons also receive direct sensory input from peripheral afferents. To infer whether asymmetric projections can facilitate sensory encoding or motor output, we modeled differentially projecting sets of central vestibular neurons. Whereas motor command strength was independent of projection allocation, asymmetric projections enabled more accurate representation of nose-up stimuli. The model shows how asymmetric connectivity could enhance the representation of imbalance during nose-up postures while preserving gaze stabilization performance. Finally, we found that central vestibular neurons were necessary for a vital behavior requiring maintenance of a nose-up posture: swim bladder inflation. These observations suggest that asymmetric connectivity in the vestibular system facilitates representation of ethologically relevant stimuli without compromising reflexive behavior.SIGNIFICANCE STATEMENT Interneuron populations use specific anatomical projections to transform sensations into reflexive actions. Here we examined how the anatomical composition of a genetically defined population of balance interneurons in the larval zebrafish relates to the computations it performs. First, we found that the population of interneurons that stabilize gaze preferentially project to motoneurons that move the eyes downward. Next, we discovered through modeling that such projection patterns can enhance the encoding of nose-up sensations without compromising gaze stabilization. Finally, we found that loss of these interneurons impairs a vital behavior, swim bladder inflation, that relies on maintaining a nose-up posture. These observations suggest that anatomical specialization permits neural circuits to represent relevant features of the environment without compromising behavior.


Subject(s)
Brain/physiology , Eye Movements , Motor Neurons/physiology , Sensory Receptor Cells/physiology , Vestibular Nerve/physiology , Animals , Brain/cytology , Reflex , Vestibular Nerve/cytology , Zebrafish
10.
Nat Methods ; 14(11): 1107-1114, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28892088

ABSTRACT

Calcium imaging with cellular resolution typically requires an animal to be tethered under a microscope, which substantially restricts the range of behaviors that can be studied. To expand the behavioral repertoire amenable to imaging, we have developed a tracking microscope that enables whole-brain calcium imaging with cellular resolution in freely swimming larval zebrafish. This microscope uses infrared imaging to track a target animal in a behavior arena. On the basis of the predicted trajectory of the animal, we applied optimal control theory to a motorized stage system to cancel brain motion in three dimensions. We combined this motion-cancellation system with differential illumination focal filtering, a variant of HiLo microscopy, which enabled us to image the brain of a freely swimming larval zebrafish for more than an hour. This work expands the repertoire of natural behaviors that can be studied with cellular-resolution calcium imaging to potentially include spatial navigation, social behavior, feeding and reward.


Subject(s)
Calcium/metabolism , Neurons/metabolism , Swimming/physiology , Zebrafish/physiology , Animals , Brain/physiology , Microscopy/methods
11.
Cell Syst ; 1(5): 338-348, 2015 Nov 25.
Article in English | MEDLINE | ID: mdl-26640823

ABSTRACT

Avoiding temperatures outside the physiological range is critical for animal survival, but how temperature dynamics are transformed into behavioral output is largely not understood. Here, we used an infrared laser to challenge freely swimming larval zebrafish with "white-noise" heat stimuli and built quantitative models relating external sensory information and internal state to behavioral output. These models revealed that larval zebrafish integrate temperature information over a time-window of 400 ms preceding a swimbout and that swimming is suppressed right after the end of a bout. Our results suggest that larval zebrafish compute both an integral and a derivative across heat in time to guide their next movement. Our models put important constraints on the type of computations that occur in the nervous system and reveal principles of how somatosensory temperature information is processed to guide behavioral decisions such as sensitivity to both absolute levels and changes in stimulation.

12.
Curr Biol ; 25(11): 1526-34, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-25959971

ABSTRACT

The Mauthner cell (M-cell) is a command-like neuron in teleost fish whose firing in response to aversive stimuli is correlated with short-latency escapes [1-3]. M-cells have been proposed as evolutionary ancestors of startle response neurons of the mammalian reticular formation [4], and studies of this circuit have uncovered important principles in neurobiology that generalize to more complex vertebrate models [3]. The main excitatory input was thought to originate from multisensory afferents synapsing directly onto the M-cell dendrites [3]. Here, we describe an additional, convergent pathway that is essential for the M-cell-mediated startle behavior in larval zebrafish. It is composed of excitatory interneurons called spiral fiber neurons, which project to the M-cell axon hillock. By in vivo calcium imaging, we found that spiral fiber neurons are active in response to aversive stimuli capable of eliciting escapes. Like M-cell ablations, bilateral ablations of spiral fiber neurons largely eliminate short-latency escapes. Unilateral spiral fiber neuron ablations shift the directionality of escapes and indicate that spiral fiber neurons excite the M-cell in a lateralized manner. Their optogenetic activation increases the probability of short-latency escapes, supporting the notion that spiral fiber neurons help activate M-cell-mediated startle behavior. These results reveal that spiral fiber neurons are essential for the function of the M-cell in response to sensory cues and suggest that convergent excitatory inputs that differ in their input location and timing ensure reliable activation of the M-cell, a feedforward excitatory motif that may extend to other neural circuits.


Subject(s)
Escape Reaction/physiology , Interneurons/physiology , Zebrafish/physiology , Animals , Animals, Genetically Modified
13.
Nat Methods ; 10(5): 413-20, 2013 May.
Article in English | MEDLINE | ID: mdl-23524393

ABSTRACT

Brain function relies on communication between large populations of neurons across multiple brain areas, a full understanding of which would require knowledge of the time-varying activity of all neurons in the central nervous system. Here we use light-sheet microscopy to record activity, reported through the genetically encoded calcium indicator GCaMP5G, from the entire volume of the brain of the larval zebrafish in vivo at 0.8 Hz, capturing more than 80% of all neurons at single-cell resolution. Demonstrating how this technique can be used to reveal functionally defined circuits across the brain, we identify two populations of neurons with correlated activity patterns. One circuit consists of hindbrain neurons functionally coupled to spinal cord neuropil. The other consists of an anatomically symmetric population in the anterior hindbrain, with activity in the left and right halves oscillating in antiphase, on a timescale of 20 s, and coupled to equally slow oscillations in the inferior olive.


Subject(s)
Brain/physiology , Microscopy/methods , Animals , Brain/metabolism , Zebrafish
14.
Curr Biol ; 22(14): 1285-95, 2012 Jul 24.
Article in English | MEDLINE | ID: mdl-22704987

ABSTRACT

BACKGROUND: Although adult vertebrates sense changes in head position by using two classes of accelerometer, at larval stages zebrafish lack functional semicircular canals and rely exclusively on their otolithic organs to transduce vestibular information. RESULTS: Despite this limitation, we find that larval zebrafish perform an effective vestibulo-ocular reflex (VOR) that serves to stabilize gaze in response to pitch and roll tilts. By using single-cell electroporations and targeted laser ablations, we identified a specific class of central vestibular neurons, located in the tangential nucleus, that are essential for the utricle-dependent VOR. Tangential nucleus neurons project contralaterally to extraocular motoneurons and in addition to multiple sites within the reticulospinal complex. CONCLUSIONS: We propose that tangential neurons function as a broadband inertial accelerometer, processing utricular acceleration signals to control the activity of extraocular and postural neurons, thus completing a fundamental three-neuron circuit responsible for gaze stabilization.


Subject(s)
Eye Movements , Reflex, Vestibulo-Ocular , Vestibular Nuclei/physiology , Visual Perception , Zebrafish/physiology , Animals , Gravitation , Larva/growth & development , Larva/physiology , Laser Therapy , Otolithic Membrane/physiopathology , Saccule and Utricle/physiology , Saccule and Utricle/surgery , Signal Transduction , Vestibular Nuclei/surgery , Zebrafish/growth & development
15.
Nature ; 485(7399): 471-7, 2012 May 09.
Article in English | MEDLINE | ID: mdl-22622571

ABSTRACT

A fundamental question in neuroscience is how entire neural circuits generate behaviour and adapt it to changes in sensory feedback. Here we use two-photon calcium imaging to record the activity of large populations of neurons at the cellular level, throughout the brain of larval zebrafish expressing a genetically encoded calcium sensor, while the paralysed animals interact fictively with a virtual environment and rapidly adapt their motor output to changes in visual feedback. We decompose the network dynamics involved in adaptive locomotion into four types of neuronal response properties, and provide anatomical maps of the corresponding sites. A subset of these signals occurred during behavioural adjustments and are candidates for the functional elements that drive motor learning. Lesions to the inferior olive indicate a specific functional role for olivocerebellar circuitry in adaptive locomotion. This study enables the analysis of brain-wide dynamics at single-cell resolution during behaviour.


Subject(s)
Adaptation, Physiological/physiology , Brain/cytology , Brain/physiology , Neurons/physiology , Psychomotor Performance/physiology , Zebrafish/physiology , Animals , Animals, Genetically Modified , Larva/physiology , Learning/physiology , Locomotion/physiology , Models, Neurological , Nerve Net , Neuropil/physiology , Photic Stimulation , Single-Cell Analysis , Zebrafish/anatomy & histology , Zebrafish/growth & development
16.
Science ; 336(6082): 721-4, 2012 May 11.
Article in English | MEDLINE | ID: mdl-22499809

ABSTRACT

Biological systems involving short-range activators and long-range inhibitors can generate complex patterns. Reaction-diffusion models postulate that differences in signaling range are caused by differential diffusivity of inhibitor and activator. Other models suggest that differential clearance underlies different signaling ranges. To test these models, we measured the biophysical properties of the Nodal/Lefty activator/inhibitor system during zebrafish embryogenesis. Analysis of Nodal and Lefty gradients revealed that Nodals have a shorter range than Lefty proteins. Pulse-labeling analysis indicated that Nodals and Leftys have similar clearance kinetics, whereas fluorescence recovery assays revealed that Leftys have a higher effective diffusion coefficient than Nodals. These results indicate that differential diffusivity is the major determinant of the differences in Nodal/Lefty range and provide biophysical support for reaction-diffusion models of activator/inhibitor-mediated patterning.


Subject(s)
Blastula/metabolism , Body Patterning , Intracellular Signaling Peptides and Proteins/metabolism , Left-Right Determination Factors/metabolism , Nodal Signaling Ligands/metabolism , Zebrafish Proteins/metabolism , Zebrafish/embryology , Animals , Diffusion , Embryonic Development , Fluorescence Recovery After Photobleaching , Half-Life , Intracellular Signaling Peptides and Proteins/genetics , Kinetics , Left-Right Determination Factors/genetics , Models, Biological , Nodal Signaling Ligands/genetics , Recombinant Fusion Proteins/metabolism , Zebrafish/metabolism , Zebrafish Proteins/genetics
17.
Nature ; 441(7092): 509-12, 2006 May 25.
Article in English | MEDLINE | ID: mdl-16724067

ABSTRACT

Wolbachia are intracellular bacteria found in the reproductive tissue of all major groups of arthropods. They are transmitted vertically from the female hosts to their offspring, in a pattern analogous to mitochondria inheritance. But Wolbachia phylogeny does not parallel that of the host, indicating that horizontal infectious transmission must also occur. Insect parasitoids are considered the most likely vectors, but the mechanism for horizontal transfer is largely unknown. Here we show that newly introduced Wolbachia cross several tissues and infect the germline of the adult Drosophila melanogaster female. Through investigation of bacterial migration patterns during the course of infection, we found that Wolbachia reach the germline through the somatic stem cell niche in the D. melanogaster germarium. In addition, our data suggest that Wolbachia are highly abundant in the somatic stem cell niche of long-term infected hosts, implying that this location may also contribute to efficient vertical transmission. This is, to our knowledge, the first report of an intracellular parasite displaying tropism for a stem cell niche.


Subject(s)
Drosophila melanogaster/microbiology , Germ Cells/microbiology , Stem Cells/microbiology , Wolbachia/physiology , Abdomen/microbiology , Animals , Disease Transmission, Infectious , Female , Host-Parasite Interactions , Infectious Disease Transmission, Vertical , Organ Specificity , Stem Cells/cytology , Stem Cells/metabolism
18.
Genome Biol ; 6(13): R114, 2005.
Article in English | MEDLINE | ID: mdl-16420673

ABSTRACT

We have developed a general probabilistic system for query-based discovery of pathway-specific networks through integration of diverse genome-wide data. This framework was validated by accurately recovering known networks for 31 biological processes in Saccharomyces cerevisiae and experimentally verifying predictions for the process of chromosomal segregation. Our system, bioPIXIE, a public, comprehensive system for integration, analysis, and visualization of biological network predictions for S. cerevisiae, is freely accessible over the worldwide web.


Subject(s)
Genomics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Bayes Theorem , Cell Cycle Proteins/metabolism , Computational Biology , Computer Graphics , HSP90 Heat-Shock Proteins/metabolism , Molecular Chaperones/metabolism , Protein Interaction Mapping , Reproducibility of Results , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...