Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Cell Fact ; 19(1): 68, 2020 Mar 16.
Article in English | MEDLINE | ID: mdl-32178677

ABSTRACT

BACKGROUND: Worldwide 3.4 billion tonnes of municipal solid waste (MSW) will be produced annually by 2050, however, current approaches to MSW management predominantly involve unsustainable practices like landfilling and incineration. The organic fraction of MSW (OMSW) typically comprises ~ 50% lignocellulose-rich material but is underexplored as a biomanufacturing feedstock due to its highly inconsistent and heterogeneous composition. This study sought to overcome the limitations associated with studying MSW-derived feedstocks by using OMSW produced from a realistic and reproducible MSW mixture on a commercial autoclave system. The resulting OMSW fibre was enzymatically hydrolysed and used to screen diverse microorganisms of biotechnological interest to identify robust species capable of fermenting this complex feedstock. RESULTS: The autoclave pre-treated OMSW fibre contained a polysaccharide fraction comprising 38% cellulose and 4% hemicellulose. Enzymatic hydrolysate of OMSW fibre was high in D-glucose (5.5% w/v) and D-xylose (1.8%w/v) but deficient in nitrogen and phosphate. Although relatively low levels of levulinic acid (30 mM) and vanillin (2 mM) were detected and furfural and 5-hydroxymethylfurfural were absent, the hydrolysate contained an abundance of potentially toxic metals (0.6% w/v). Hydrolysate supplemented with 1% yeast extract to alleviate nutrient limitation was used in a substrate-oriented shake-flask screen with eight biotechnologically useful microorganisms (Clostridium saccharoperbutylacetonicum, Escherichia coli, Geobacillus thermoglucosidasius, Pseudomonas putida, Rhodococcus opacus, Saccharomyces cerevisiae, Schizosaccharomyces pombe and Zymomonas mobilis). Each species' growth and productivity were characterised and three species were identified that robustly and efficiently fermented OMSW fibre hydrolysate without significant substrate inhibition: Z. mobilis, S. cerevisiae and R. opacus, respectively produced product to 69%, 70% and 72% of the maximum theoretical fermentation yield and could theoretically produce 136 kg and 139 kg of ethanol and 91 kg of triacylglycerol (TAG) per tonne of OMSW. CONCLUSIONS: Developing an integrated biorefinery around MSW has the potential to significantly alleviate the environmental burden of current waste management practices. Substrate-oriented screening of a representative and reproducible OMSW-derived fibre identified microorganisms intrinsically suited to growth on OMSW hydrolysates. These species are promising candidates for developing an MSW biorefining platform and provide a foundation for future studies aiming to valorise this underexplored feedstock.


Subject(s)
Bacteria/metabolism , Biosolids/microbiology , Cellulose/metabolism , Fungi/metabolism , Polysaccharides/metabolism , Bacteria/growth & development , Biofuels , Ethanol/metabolism , Fermentation , Fungi/growth & development , Triglycerides/metabolism
2.
BMC Res Notes ; 8: 561, 2015 Oct 13.
Article in English | MEDLINE | ID: mdl-26462790

ABSTRACT

BACKGROUND: To demonstrate the bioinformatics capabilities of a low-cost computer, the Raspberry Pi, we present a comparison of the protein-coding gene content of two species in phylum Chlamydiae: Chlamydia trachomatis, a common sexually transmitted infection of humans, and Candidatus Protochlamydia amoebophila, a recently discovered amoebal endosymbiont. Identifying species-specific proteins and differences in protein families could provide insights into the unique phenotypes of the two species. RESULTS: Using a Raspberry Pi computer, sequence similarity-based protein families were predicted across the two species, C. trachomatis and P. amoebophila, and their members counted. Examples include nine multi-protein families unique to C. trachomatis, 132 multi-protein families unique to P. amoebophila and one family with multiple copies in both. Most families unique to C. trachomatis were polymorphic outer-membrane proteins. Additionally, multiple protein families lacking functional annotation were found. Predicted functional interactions suggest one of these families is involved with the exodeoxyribonuclease V complex. CONCLUSION: The Raspberry Pi computer is adequate for a comparative genomics project of this scope. The protein families unique to P. amoebophila may provide a basis for investigating the host-endosymbiont interaction. However, additional species should be included; and further laboratory research is required to identify the functions of unknown or putative proteins. Multiple outer membrane proteins were found in C. trachomatis, suggesting importance for host evasion. The tyrosine transport protein family is shared between both species, with four proteins in C. trachomatis and two in P. amoebophila. Shared protein families could provide a starting point for discovery of wide-spectrum drugs against Chlamydiae.


Subject(s)
Bacterial Proteins/genetics , Chlamydia trachomatis/genetics , Chlamydiales/genetics , Computational Biology/instrumentation , Open Reading Frames , Amino Acid Sequence , Bacterial Proteins/metabolism , Chlamydia trachomatis/metabolism , Chlamydiales/metabolism , Exodeoxyribonuclease V/genetics , Exodeoxyribonuclease V/metabolism , Gene Expression , Membrane Proteins/genetics , Membrane Proteins/metabolism , Microcomputers , Molecular Sequence Annotation , Molecular Sequence Data , Protein Interaction Mapping , Sequence Alignment , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...