Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
1.
J Neuroeng Rehabil ; 20(1): 136, 2023 10 05.
Article in English | MEDLINE | ID: mdl-37798637

ABSTRACT

BACKGROUND: Movement sonification, the use of real-time auditory feedback linked to movement parameters, have been proposed to support rehabilitation. Nevertheless, if promising results have been reported, the effect of the type of sound used has not been studied systematically. The aim of this study was to investigate in a single session the effect of different types of sonification both quantitatively and qualitatively on patients with acquired brain lesions and healthy participants. METHODS: An experimental setup enabling arm sonification was developed using three different categories of sonification (direct sound modulation, musical interaction, and soundscape). Simple moving forward movements performed while sliding on a table with both arms were investigated with all participants. Quantitative analysis on the movement timing were performed considering various parameters (sound condition, affected arm and dominance, sonification categories). Qualitative analysis of semi-structured interviews were also conducted, as well as neuropsychological evaluation of music perception. RESULTS: For both the patient and healthy groups (15 participants each), average duration for performing the arm movement is significantly longer with sonification compared to the no-sound condition (p < 0.001). Qualitative analysis of semi-structured interviews revealed different aspects of motivational and affective aspects of sonification. Most participants of both groups preferred to complete the task with sound (29 of 30 participants), and described the experience as playful (22 of 30 participants). More precisely, the soundscape (nature sounds) was the most constantly preferred (selected first by 14 of 30 participants). CONCLUSION: Overall, our results confirm that the sonification has an effect on the temporal execution of the movement during a single-session. Globally, sonification is welcomed by the participants, and we found convergent and differentiated appreciations of the different sonification types.


Subject(s)
Movement , Music , Humans , Healthy Volunteers , Arm
2.
J Neuroeng Rehabil ; 20(1): 132, 2023 09 30.
Article in English | MEDLINE | ID: mdl-37777814

ABSTRACT

Characterizing human movement is essential for understanding movement disorders, evaluating progress in rehabilitation, or even analyzing how a person adapts to the use of assistive devices. Thanks to the improvement of motion capture technology, recording human movement has become increasingly accessible and easier to conduct. Over the last few years, multiple methods have been proposed for characterizing inter-joint coordination. Despite this, there is no real consensus regarding how these different inter-joint coordination metrics should be applied when analyzing the coordination of discrete movement from kinematic data. In this work, we consider 12 coordination metrics identified from the literature and apply them to a simulated dataset based on reaching movements using two degrees of freedom. Each metric is evaluated according to eight criteria based on current understanding of human motor control physiology, i.e, each metric is graded on how well it fulfills each of these criteria. This comparative analysis highlights that no single inter-joint coordination metric can be considered as ideal. Depending on the movement characteristics that one seeks to understand, one or several metrics among those reviewed here may be pertinent in data analysis. We propose four main factors when choosing a metric (or a group of metrics): the importance of temporal vs. spatial coordination, the need for result explainability, the size of the dataset, and the computational resources. As a result, this study shows that extracting the relevant characteristics of inter-joint coordination is a scientific challenge and requires a methodical choice. As this preliminary study is conducted on a limited dataset, a more comprehensive analysis, introducing more variability, could be complementary to these results.


Subject(s)
Movement Disorders , Movement , Humans , Movement/physiology , Biomechanical Phenomena
3.
Sensors (Basel) ; 23(11)2023 May 29.
Article in English | MEDLINE | ID: mdl-37299885

ABSTRACT

Upper limb exoskeletons may confer significant mechanical advantages across a range of tasks. The potential consequences of the exoskeleton upon the user's sensorimotor capacities however, remain poorly understood. The purpose of this study was to examine how the physical coupling of the user's arm to an upper limb exoskeleton influenced the perception of handheld objects. In the experimental protocol, participants were required to estimate the length of a series of bars held in their dominant right hand, in the absence of visual feedback. Their performance in conditions with an exoskeleton fixed to the forearm and upper arm was compared to conditions without the upper limb exoskeleton. Experiment 1 was designed to verify the effects of attaching an exoskeleton to the upper limb, with object handling limited to rotations of the wrist only. Experiment 2 was designed to verify the effects of the structure, and its mass, with combined movements of the wrist, elbow, and shoulder. Statistical analysis indicated that movements performed with the exoskeleton did not significantly affect perception of the handheld object in experiment 1 (BF01 = 2.3) or experiment 2 (BF01 = 4.3). These findings suggest that while the integration of an exoskeleton complexifies the architecture of the upper limb effector, this does not necessarily impede transmission of the mechanical information required for human exteroception.


Subject(s)
Exoskeleton Device , Humans , Biomechanical Phenomena , Upper Extremity , Shoulder , Arm
4.
PLoS One ; 17(12): e0278228, 2022.
Article in English | MEDLINE | ID: mdl-36525415

ABSTRACT

Understanding and quantifying inter-joint coordination is valuable in several domains such as neurorehabilitation, robot-assisted therapy, robotic prosthetic arms, and control of supernumerary arms. Inter-joint coordination is often understood as a consistent spatiotemporal relation among kinematically redundant joints performing functional and goal-oriented movements. However, most approaches in the literature to investigate inter-joint coordination are limited to analysis of the end-point trajectory or correlation analysis of the joint rotations without considering the underlying task; e.g., creating a desirable hand movement toward a goal as in reaching motions. This work goes beyond this limitation by taking a model-based approach to quantifying inter-joint coordination. More specifically, we use the weighted pseudo-inverse of the Jacobian matrix and its associated null-space to explain the human kinematics in reaching tasks. We propose a novel algorithm to estimate such Inverse Kinematics weights from observed kinematic data. These estimated weights serve as a quantification for spatial inter-joint coordination; i.e., how costly a redundant joint is in its contribution to creating an end-effector velocity. We apply our estimation algorithm to datasets obtained from two different experiments. In the first experiment, the estimated Inverse Kinematics weights pinpoint how individuals change their Inverse Kinematics strategy when exposed to the viscous field wearing an exoskeleton. The second experiment shows how the resulting Inverse Kinematics weights can quantify a robotic prosthetic arm's contribution (or the level of assistance).


Subject(s)
Artificial Limbs , Exoskeleton Device , Humans , Biomechanical Phenomena , Arm , Upper Extremity , Movement
5.
PLoS One ; 17(11): e0277917, 2022.
Article in English | MEDLINE | ID: mdl-36399487

ABSTRACT

After a major upper limb amputation, the use of myoelectric prosthesis as assistive devices is possible. However, these prostheses remain quite difficult to control for grasping and manipulation of daily life objects. The aim of the present observational case study is to document the kinematics of grasping in a group of 10 below-elbow amputated patients fitted with a myoelectric prosthesis in order to describe and better understand their compensatory strategies. They performed a grasping to lift task toward 3 objects (a mug, a cylinder and a cone) placed at two distances within the reaching area in front of the patients. The kinematics of the trunk and upper-limb on the non-amputated and prosthetic sides were recorded with 3 electromagnetic Polhemus sensors placed on the hand, the forearm (or the corresponding site on the prosthesis) and the ipsilateral acromion. The 3D position of the elbow joint and the shoulder and elbow angles were calculated thanks to a preliminary calibration of the sensor position. We examined first the effect of side, distance and objects with non-parametric statistics. Prosthetic grasping was characterized by severe temporo-spatial impairments consistent with previous clinical or kinematic observations. The grasping phase was prolonged and the reaching and grasping components uncoupled. The 3D hand displacement was symmetrical in average, but with some differences according to the objects. Compensatory strategies involved the trunk and the proximal part of the upper-limb, as shown by a greater 3D displacement of the elbow for close target and a greater forward displacement of the acromion, particularly for far targets. The hand orientation at the time of grasping showed marked side differences with a more frontal azimuth, and a more "thumb-up" roll. The variation of hand orientation with the object on the prosthetic side, suggested that the lack of finger and wrist mobility imposed some adaptation of hand pose relative to the object. The detailed kinematic analysis allows more insight into the mechanisms of the compensatory strategies that could be due to both increased distal or proximal kinematic constraints. A better knowledge of those compensatory strategies is important for the prevention of musculoskeletal disorders and the development of innovative prosthetics.


Subject(s)
Amputees , Artificial Limbs , Elbow Joint , Humans , Biomechanical Phenomena , Elbow
6.
PLoS Comput Biol ; 18(8): e1010470, 2022 08.
Article in English | MEDLINE | ID: mdl-36040962

ABSTRACT

When human participants repeatedly encounter a velocity-dependent force field that distorts their movement trajectories, they adapt their motor behavior to recover straight trajectories. Computational models suggest that adaptation to a force field occurs at the action selection level through changes in the mapping between goals and actions. The quantitative prediction from these models indicates that early perturbed trajectories before adaptation and late unperturbed trajectories after adaptation should have opposite curvature, i.e. one being a mirror image of the other. We tested these predictions in a human adaptation experiment and we found that the expected mirror organization was either absent or much weaker than predicted by the models. These results are incompatible with adaptation occurring at the action selection level but compatible with adaptation occurring at the goal selection level, as if adaptation corresponds to aiming toward spatially remapped targets.


Subject(s)
Adaptation, Physiological , Movement , Acclimatization , Humans , Psychomotor Performance
7.
Int J Med Robot ; 18(5): e2416, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35582733

ABSTRACT

BACKGROUND: For many co-manipulative applications, variable damping is a valuable feature provided by robots. One approach is implementing a high viscosity at low velocities and a low viscosity at high velocities. This, however, is proven to have the possibility to alter human natural motion performance. METHODS: We show that the distortion is caused by the viscosity drop resulting in robot's resistance to motion. To address this, a method for stably achieving the desired behaviour is presented. It involves leveraging a first-order linear filter to slow the viscosity variation down. RESULTS: The proposition is supported by a theoretical analysis using a robotic model. Meanwhile, the user performance in human-robot experiments gets significantly improved, showing the practical efficiency in real applications. CONCLUSIONS: This paper discusses the variable viscosity control in the context of co-manipulation. An instability problem and its solution were theoretically shown and experimentally evidenced through human-robot experiments.


Subject(s)
Robotics , Humans , Motion , Robotics/methods , Viscosity
9.
Ann Phys Rehabil Med ; 65(3): 101622, 2022 May.
Article in English | MEDLINE | ID: mdl-34929355

ABSTRACT

BACKGROUND: Commercial gaming systems are increasingly being used for stroke rehabilitation; however, their effect on upper-limb recovery versus compensation is unknown. OBJECTIVES: We aimed to compare the effect of upper-limb rehabilitation using interactive gaming (Nintendo Wii) with dose-matched conventional therapy on elbow extension (recovery) and forward trunk motion (compensation) in individuals with chronic stroke. Secondary aims were to compare the effect on (1) clinical tests of impairment and activity, pain and effort, and (2) trajectory kinematics. We also explored arm and trunk motion (acceleration) during Wii sessions to understand how participants performed movements during Wii gaming. METHODS: This single-centre, randomized controlled trial compared 12 hourly sessions over 4 weeks of upper-limb Wii therapy to conventional therapy. Outcomes were evaluated at baseline and 4 weeks. The change in elbow extension and trunk motion during a reaching task was evaluated by electromagnetic sensors. Secondary outcomes were change in Fugl-Meyer assessment, Box and Block test, Action Research Arm Test, Motor Activity Log, and Stroke Impact Scale scores. Arm and trunk acceleration during Wii therapy was evaluated by using inertial sensors. A healthy control group was included for reference data. RESULTS: Nineteen participants completed Wii therapy and 21 conventional therapy (mean [SD] time post-stroke 66.4 [57.2] months). The intervention and control groups did not differ in mean change in elbow extension angle (Wii: +4.5°, 95% confidence interval [CI] 0.1; 9.1; conventional therapy: +6.4°, 95%CI 0.6; 12.2) and forward trunk position (Wii: -3.3 cm, 95%CI -6.2;-0.4]; conventional therapy: -4.1 cm, 95%CI -6.6; -1.6) (effect size: elbow, d = 0.16, p = 0.61; trunk, d = 0.13, p = 0.65). Clinical scores improved similarly but to a small extent in both groups. The amount of arm but not trunk acceleration produced during Wii sessions increased with training. CONCLUSIONS: Supervised upper-limb gaming therapy induced similar recovery of elbow extension as conventional therapy and did not enhance the development of compensatory forward trunk movement in individuals with chronic stroke. More sessions may be necessary to induce greater improvements. CLINICALTRIALS: GOV: NCT01806883.


Subject(s)
Stroke Rehabilitation , Stroke , Video Games , Biomechanical Phenomena , Brain Damage, Chronic , Humans , Stroke/complications , Treatment Outcome , Upper Extremity
10.
Sensors (Basel) ; 21(16)2021 Aug 04.
Article in English | MEDLINE | ID: mdl-34450696

ABSTRACT

Detecting human motion and predicting human intentions by analyzing body signals are challenging but fundamental steps for the implementation of applications presenting human-robot interaction in different contexts, such as robotic rehabilitation in clinical environments, or collaborative robots in industrial fields. Machine learning techniques (MLT) can face the limit of small data amounts, typical of this kind of applications. This paper studies the illustrative case of the reaching movement in 10 healthy subjects and 21 post-stroke patients, comparing the performance of linear discriminant analysis (LDA) and random forest (RF) in: (i) predicting the subject's intention of moving towards a specific direction among a set of possible choices, (ii) detecting if the subject is moving according to a healthy or pathological pattern, and in the case of discriminating the damage location (left or right hemisphere). Data were captured with wearable electromagnetic sensors, and a sub-section of the acquired signals was required for the analyses. The possibility of detecting with which arm (left or right hand) the motion was performed, and the sensitivity of the MLT to variations in the length of the signal sub-section were also evaluated. LDA and RF prediction accuracies were compared: Accuracy improves when only healthy subjects or longer signals portions are considered up to 11% and at least 10%, respectively. RF reveals better estimation performance both as intention predictor (on average 59.91% versus the 62.19% of LDA), and health condition detector (over 90% in all the tests).


Subject(s)
Hand , Intention , Electromyography , Humans , Machine Learning , Movement
11.
Front Hum Neurosci ; 15: 662006, 2021.
Article in English | MEDLINE | ID: mdl-34234659

ABSTRACT

Impairments in dexterous upper limb function are a significant cause of disability following stroke. While the physiological basis of movement deficits consequent to a lesion in the pyramidal tract is well demonstrated, specific mechanisms contributing to optimal recovery are less apparent. Various upper limb interventions (motor learning methods, neurostimulation techniques, robotics, virtual reality, and serious games) are associated with improvements in motor performance, but many patients continue to experience significant limitations with object handling in everyday activities. Exactly how we go about consolidating adaptive motor behaviors through the rehabilitation process thus remains a considerable challenge. An important part of this problem is the ability to successfully distinguish the extent to which a given gesture is determined by the neuromotor impairment and that which is determined by a compensatory mechanism. This question is particularly complicated in tasks involving manual dexterity where prehensile movements are contingent upon the task (individual digit movement, grasping, and manipulation…) and its objective (placing, two step actions…), as well as personal factors (motivation, acquired skills, and life habits…) and contextual cues related to the environment (presence of tools or assistive devices…). Presently, there remains a lack of integrative studies which differentiate processes related to structural changes associated with the neurological lesion and those related to behavioral change in response to situational constraints. In this text, we shall question the link between impairments, motor strategies and individual performance in object handling tasks. This scoping review will be based on clinical studies, and discussed in relation to more general findings about hand and upper limb function (manipulation of objects, tool use in daily life activity). We shall discuss how further quantitative studies on human manipulation in ecological contexts may provide greater insight into compensatory motor behavior in patients with a neurological impairment of dexterous upper-limb function.

12.
J Neurophysiol ; 126(2): 575-590, 2021 08 01.
Article in English | MEDLINE | ID: mdl-34232757

ABSTRACT

The purpose of this study was to determine the contributions of feedforward and feedback processes on grip force regulation and object orientation during functional manipulation tasks. One patient with massive somatosensory loss resulting from large fiber sensory neuropathy and 10 control participants were recruited. Three experiments were conducted: 1) perturbation to static holding; 2) discrete vertical movement; and 3) functional grasp and place. The availability of visual feedback was also manipulated to assess the nature of compensatory mechanisms. Results from experiment 1 indicated that both the deafferented patient and controls used anticipatory grip force adjustments before self-induced perturbation to static holding. The patient exhibited increased grip response time, but the magnitude of grip force adjustments remained correlated with perturbation forces in the self-induced and external perturbation conditions. In experiment 2, the patient applied peak grip force substantially in advance of maximum load force. Unlike controls, the patient's ability to regulate object orientation was impaired without visual feedback. In experiment 3, the duration of unloading, transport, and release phases were longer for the patient, with increased deviation of object orientation at phase transitions. These findings show that the deafferented patient uses distinct modes of anticipatory control according to task constraints and that responses to perturbations are mediated by alternative afferent information. The loss of somatosensory feedback thus appears to impair control of object orientation, whereas variation in the temporal organization of functional tasks may reflect strategies to mitigate object instability associated with changes in movement dynamics.NEW & NOTEWORTHY This study evaluates the effects of sensory neuropathy on the scaling and timing of grip force adjustments across different object handling tasks (i.e., holding, vertical movement, grasping, and placement). In particular, these results illustrate how novel anticipatory and online control processes emerge to compensate for the loss of somatosensory feedback. In addition, we provide new evidence on the role of somatosensory feedback for regulating object orientation during functional prehensile movement.


Subject(s)
Adaptation, Physiological , Hand Strength , Polyneuropathies/physiopathology , Aged , Biomechanical Phenomena , Feedback, Sensory , Female , Humans , Male , Middle Aged , Neurons, Afferent/pathology , Neurons, Afferent/physiology , Psychomotor Performance
13.
Exp Brain Res ; 238(4): 1011-1024, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32198542

ABSTRACT

Most studies on the regulation of speed and trajectory during ellipse drawing have used visual feedback. We used online auditory feedback (sonification) to induce implicit movement changes independently from vision. The sound was produced by filtering a pink noise with a band-pass filter proportional to movement speed. The first experiment was performed in 2D. Healthy participants were asked to repetitively draw ellipses during 45 s trials whilst maintaining a constant sonification pattern (involving pitch variations during the cycle). Perturbations were produced by modifying the slope of the mapping without informing the participants. All participants adapted spontaneously their speed: they went faster if the slope decreased and slower if it increased. Higher velocities were achieved by increasing both the frequency of the movements and the perimeter of the ellipses, but slower velocities were achieved mainly by decreasing the perimeter of the ellipses. The shape and the orientation of the ellipses were not significantly altered. The analysis of the speed-curvature power law parameters showed consistent modulations of the speed gain factor, while the exponent remained stable. The second experiment was performed in 3D and showed similar results, except that the main orientation of the ellipse also varied with the changes in speed. In conclusion, this study demonstrated implicit modulation of movement speed by sonification and robust stability of the ellipse geometry. Participants appeared to limit the decrease in movement frequency during slowing down to maintain a rhythmic and not discrete motor regimen.


Subject(s)
Auditory Perception/physiology , Feedback, Sensory/physiology , Motor Activity/physiology , Psychomotor Performance/physiology , Time Perception/physiology , Adult , Female , Humans , Male , Pitch Perception/physiology , Young Adult
15.
Front Neurol ; 10: 240, 2019.
Article in English | MEDLINE | ID: mdl-30941091

ABSTRACT

Objective: Limitations with manual dexterity are an important problem for patients suffering from hemiparesis post stroke. Sensorimotor deficits, compensatory strategies and the use of alternative grasping configurations may influence the efficiency of prehensile motor behavior. The aim of the present study is to examine how different grasp configurations affect patient ability to regulate both grip forces and object orientation when lifting, holding and placing an object. Methods: Twelve stroke patients with mild to moderate hemiparesis were recruited. Each was required to lift, hold and replace an instrumented object. Four different grasp configurations were tested on both the hemiparetic and less affected arms. Load cells from each of the 6 faces of the instrumented object and an integrated inertial measurement unit were used to extract data regarding the timing of unloading/loading phases, regulation of grip forces, and object orientation throughout the task. Results: Grip forces were greatest when using a palmar-digital grasp and lowest when using a top grasp. The time delay between peak acceleration and maximum grip force was also greatest for palmar-digital grasp and lowest for the top grasp. Use of the hemiparetic arm was associated with increased duration of the unloading phase and greater difficulty with maintaining the vertical orientation of the object at the transitions to object lifting and object placement. The occurrence of touch and push errors at the onset of grasp varied according to both grasp configuration and use of the hemiparetic arm. Conclusion: Stroke patients exhibit impairments in the scale and temporal precision of grip force adjustments and reduced ability to maintain object orientation with various grasp configurations using the hemiparetic arm. Nonetheless, the timing and magnitude of grip force adjustments may be facilitated using a top grasp configuration. Conversely, whole hand prehension strategies compound difficulties with grip force scaling and inhibit the synchrony of grasp onset and object release.

16.
J Neurophysiol ; 121(2): 715-727, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30649981

ABSTRACT

Moving smoothly is generally considered as a higher-order goal of motor control and moving jerkily as a witness of clumsiness or pathology, yet many common and well-controlled movements (e.g., tracking movements) have irregular velocity profiles with widespread fluctuations. The origin and nature of these fluctuations have been associated with the operation of an intermittent process but in fact remain poorly understood. Here we studied velocity fluctuations during slow movements, using combined experimental and theoretical tools. We recorded arm movement trajectories in a group of healthy participants performing back-and-forth movements at different speeds, and we analyzed velocity profiles in terms of series of segments (portions of velocity between 2 minima). We found that most of the segments were smooth (i.e., corresponding to a biphasic acceleration) and had constant duration irrespective of movement speed and linearly increasing amplitude with movement speed. We accounted for these observations with an optimal feedback control model driven by a staircase goal position signal in the presence of sensory noise. Our study suggests that one and the same control process can explain the production of fast and slow movements, i.e., fast movements emerge from the immediate tracking of a global goal position and slow movements from the successive tracking of intermittently updated intermediate goal positions. NEW & NOTEWORTHY We show in experiments and modeling that slow movements could result from the brain tracking a sequence of via points regularly distributed in time and space. Accordingly, slow movements would differ from fast movement by the nature of the guidance and not by the nature of control. This result could help in understanding the origin and nature of slow and segmented movements frequently observed in brain disorders.


Subject(s)
Models, Neurological , Movement/physiology , Adult , Biomechanical Phenomena , Feedback, Sensory , Female , Humans , Male , Psychomotor Performance
17.
Multisens Res ; : 1-23, 2019 Jan 01.
Article in English | MEDLINE | ID: mdl-32092705

ABSTRACT

Understanding the processes underlying sensorimotor coupling with the environment is crucial for sensorimotor rehabilitation and sensory substitution. In doing so, devices which provide novel sensory feedback consequent to body movement may be optimized in order to enhance motor performance for particular tasks. The aim of the study reported here was to investigate audio-motor coupling when the auditory experience is linked to movements of the head or the hands. The participants had to localize and reach a virtual source with the dominant hand in response to sounds. An electromagnetic system recorded the position and orientation of the participants' head and hands. This system was connected to a 3D audio system that provided binaural auditory feedback on the position of the virtual listener located on the participants' body. The listener's position was computed either from the hands or from the head. For the hand condition, the virtual listener was placed on the dominant hand (the one used to reach the target) in Experiment 1 and on the non-dominant hand, which was constrained in order to have similar amplitude and degrees of freedom as that of the head, in Experiment 2. The results revealed that, in the two experiments, the participants were able to localize a source within the 3D auditory environment. Performance varied as a function of the effector's degrees of freedom and the spatial coincidence between sensor and effector. The results also allowed characterizing the kinematics of the hand and head and how they change with audio-motor coupling condition and practice.

18.
Front Neurorobot ; 12: 41, 2018.
Article in English | MEDLINE | ID: mdl-30093857

ABSTRACT

Due to the limitations of myoelectric control (such as dependence on muscular fatigue and on electrodes shift, difficulty in decoding complex patterns or in dealing with simultaneous movements), there is a renewal of interest in the movement-based control approaches for prosthetics. The latter use residual limb movements rather than muscular activity as command inputs, in order to develop more natural and intuitive control techniques. Among those, several research works rely on the interjoint coordinations that naturally exist in human upper limb movements. These relationships are modeled to control the distal joints (e.g., elbow) based on the motions of proximal ones (e.g., shoulder). The regression techniques, used to model the coordinations, are various [Artificial Neural Networks, Principal Components Analysis (PCA), etc.] and yet, analysis of their performance and impact on the prosthesis control is missing in the literature. Is there one technique really more efficient than the others to model interjoint coordinations? To answer this question, we conducted an experimental campaign to compare the performance of three common regression techniques in the control of the elbow joint on a transhumeral prosthesis. Ten non-disabled subjects performed a reaching task, while wearing an elbow prosthesis which was driven by several interjoint coordination models obtained through different regression techniques. The models of the shoulder-elbow kinematic relationship were built from the recordings of fifteen different non-disabled subjects that performed a similar reaching task with their healthy arm. Among Radial Basis Function Networks (RBFN), Locally Weighted Regression (LWR), and PCA, RBFN was found to be the most robust, based on the analysis of several criteria including the quality of generated movements but also the compensatory strategies exhibited by users. Yet, RBFN does not significantly outperform LWR and PCA. The regression technique seems not to be the most significant factor for improvement of interjoint coordinations-based control. By characterizing the impact of the modeling techniques through closed-loop experiments with human users instead of purely offline simulations, this work could also help in improving movement-based control approaches and in bringing them closer to a real use by patients.

19.
Front Neurorobot ; 12: 1, 2018.
Article in English | MEDLINE | ID: mdl-29456499

ABSTRACT

Most transhumeral amputees report that their prosthetic device lacks functionality, citing the control strategy as a major limitation. Indeed, they are required to control several degrees of freedom with muscle groups primarily used for elbow actuation. As a result, most of them choose to have a one-degree-of-freedom myoelectric hand for grasping objects, a myoelectric wrist for pronation/supination, and a body-powered elbow. Unlike healthy upper limb movements, the prosthetic elbow joint angle, adjusted prior to the motion, is not involved in the overall upper limb movements, causing the rest of the body to compensate for the lack of mobility of the prosthesis. A promising solution to improve upper limb prosthesis control exploits the residual limb mobility: like in healthy movements, shoulder and prosthetic elbow motions are coupled using inter-joint coordination models. The present study aims to test this approach. A transhumeral amputated individual used a prosthesis with a residual limb motion-driven elbow to point at targets. The prosthetic elbow motion was derived from IMU-based shoulder measurements and a generic model of inter-joint coordinations built from healthy individuals data. For comparison, the participant also performed the task while the prosthetic elbow was implemented with his own myoelectric control strategy. The results show that although the transhumeral amputated participant achieved the pointing task with a better precision when the elbow was myoelectrically-controlled, he had to develop large compensatory trunk movements. Automatic elbow control reduced trunk displacements, and enabled a more natural body behavior with synchronous shoulder and elbow motions. However, due to socket impairments, the residual limb amplitudes were not as large as those of healthy shoulder movements. Therefore, this work also investigates if a control strategy whereby prosthetic joints are automatized according to healthy individuals' coordination models can lead to an intuitive and natural prosthetic control.

20.
Ann Phys Rehabil Med ; 61(1): 46-53, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28987866

ABSTRACT

BACKGROUND: The global range of motion of the arm is the result of a coordinated motion of the shoulder complex including glenohumeral (GH), scapulothoracic, sternoclavicular and acromioclavicular joints. METHODS: This study is a non-systematic review of kinematic patterns in degenerated shoulders. It is a based on our own research on the kinematics of the shoulder complex and clinical experience. RESULTS: For patients with subacromial impingement syndrome without rotator-cuff tears, most kinematic studies showed a small superior humeral translation relative to the glenoid and decreased scapular lateral rotation and posterior tilt. These scapular kinematic modifications could decrease the subacromial space and favor rotator-cuff tendon injury. For patients with shoulder pain and restricted mobility, the studies showed a significant increase in scapular lateral rotation generally seen as a compensation mechanism of GH decreased range of motion. For patients with multidirectional GH instability, the studies found an antero-inferior decentering of the humeral head, decreased scapular lateral rotation and increased scapular internal rotation. CONCLUSION: The clinical or instrumented assessment of the shoulder complex with a degenerative pathology must include the analysis of scapula-clavicle and trunk movements complementing the GH assessment. Depending on the individual clinical case, scapular dyskinesis could be the cause or the consequence of the shoulder degenerative pathology. For most degenerative shoulder pathologies, the rehabilitation program should take into account the whole shoulder complex and include first a scapular and trunk postural-correcting strategy, then scapulothoracic muscle rehabilitation (especially serratus anterior and trapezius inferior and medium parts) and finally neuromotor techniques to recover appropriate upper-limb kinematic schemas for daily and/or sports activities.


Subject(s)
Range of Motion, Articular , Rotation , Scapula/physiology , Shoulder Pain/physiopathology , Biomechanical Phenomena , Humans , Scapula/physiopathology , Shoulder/physiology , Shoulder/physiopathology , Shoulder Impingement Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL
...