Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
J Clin Med ; 13(9)2024 May 02.
Article in English | MEDLINE | ID: mdl-38731198

ABSTRACT

Background: Mitral valve prolapse (MVP) and mitral annular disjunction (MAD) are common valvular abnormalities that have been associated with ventricular arrhythmias (VA). Cardiac magnetic resonance imaging (CMR) has a key role in risk stratification of VA, including assessment of late gadolinium enhancement (LGE). Methods: Single-center retrospective analysis of patients with MVP or MAD who had >1 CMR and >1 24 h Holter registration available. Data are presented in detail, including evolution of VA and presence of LGE over time. Results: A total of twelve patients had repeated CMR and Holter registrations available, of which in four (33%) patients, it was conducted before and after minimal invasive mitral valve repair (MVR). After a median of 4.7 years, four out of eight (50%) patients without surgical intervention had new areas of LGE. New LGE was observed in the papillary muscles and the mid to basal inferolateral wall. In four patients, presenting with syncope or high-risk non-sustained ventricular tachycardia (VT), programmed ventricular stimulation was performed and in two (50%), sustained monomorphic VT was easily inducible. In two patients who underwent MVR, new LGE was observed in the basal inferolateral wall of which one presented with an increased burden of VA. Conclusions: In patients with MVP and MAD, repeat CMR may show new LGE in a small subset of patients, even shortly after MVR. A subgroup of patients who presented with an increase in VA burden showed new LGE upon repeat CMR. VA in patients with MVP and MAD are part of a heterogeneous spectrum that requires further investigation to establish risk stratification strategies.

2.
Heart Rhythm ; 2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38588993

ABSTRACT

BACKGROUND: Catecholaminergic polymorphic ventricular tachycardia (CPVT) may cause sudden cardiac death (SCD) despite medical therapy. Therefore, implantable cardioverter-defibrillators (ICDs) are commonly advised. However, there are limited data on the outcomes of ICD use in children. OBJECTIVE: The purpose of this study was to compare the risk of arrhythmic events in pediatric patients with CPVT with and without ICD. METHODS: We compared the risk of SCD in patients with RYR2 (ryanodine receptor 2) variants and phenotype-positive symptomatic patients with CPVT with and without ICD who were younger than 19 years and had no history of sudden cardiac arrest at phenotype diagnosis. The primary outcome was SCD; secondary outcomes were composite end points of SCD, sudden cardiac arrest, or appropriate ICD shocks with or without arrhythmic syncope. RESULTS: The study included 235 patients, 73 with ICD (31.1%) and 162 without ICD (68.9%). Over a median follow-up of 8.0 years (interquartile range 4.3-13.4 years), SCD occurred in 7 patients (3.0%), of whom 4 (57.1%) were noncompliant with medications and none had an ICD. Patients with ICD had a higher risk of both secondary composite outcomes (without syncope: hazard ratio 5.85; 95% confidence interval 3.40-10.09; P < .0001; with syncope: hazard ratio 2.55; 95% confidence interval 1.50-4.34; P = .0005). Thirty-one patients with ICD (42.5%) experienced appropriate shocks, 18 (24.7%) inappropriate shocks, and 21 (28.8%) device-related complications. CONCLUSION: SCD events occurred only in the no ICD group and in those not on optimal medical therapy. Patients with ICD had a high risk of appropriate and inappropriate shocks, which may be reduced with appropriate device programming. Severe ICD complications were common, and risks vs benefits of ICDs need to be considered.

3.
Circulation ; 149(18): 1405-1415, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38109351

ABSTRACT

BACKGROUND: Exercise-induced cardiac remodeling can be profound, resulting in clinical overlap with dilated cardiomyopathy, yet the significance of reduced ejection fraction (EF) in athletes is unclear. The aim is to assess the prevalence, clinical consequences, and genetic predisposition of reduced EF in athletes. METHODS: Young endurance athletes were recruited from elite training programs and underwent comprehensive cardiac phenotyping and genetic testing. Those with reduced EF using cardiac magnetic resonance imaging (defined as left ventricular EF <50%, or right ventricular EF <45%, or both) were compared with athletes with normal EF. A validated polygenic risk score for indexed left ventricular end-systolic volume (LVESVi-PRS), previously associated with dilated cardiomyopathy, was assessed. Clinical events were recorded over a mean of 4.4 years. RESULTS: Of the 281 elite endurance athletes (22±8 years, 79.7% male) undergoing comprehensive assessment, 44 of 281 (15.7%) had reduced left ventricular EF (N=12; 4.3%), right ventricular EF (N=14; 5.0%), or both (N=18; 6.4%). Reduced EF was associated with a higher burden of ventricular premature beats (13.6% versus 3.8% with >100 ventricular premature beats/24 h; P=0.008) and lower left ventricular global longitudinal strain (-17%±2% versus -19%±2%; P<0.001). Athletes with reduced EF had a higher mean LVESVi-PRS (0.57±0.13 versus 0.51±0.14; P=0.009) with athletes in the top decile of LVESVi-PRS having an 11-fold increase in the likelihood of reduced EF compared with those in the bottom decile (P=0.034). Male sex and higher LVESVi-PRS were the only significant predictors of reduced EF in a multivariate analysis that included age and fitness. During follow-up, no athletes developed symptomatic heart failure or arrhythmias. Two athletes died, 1 from trauma and 1 from sudden cardiac death, the latter having a reduced right ventricular EF and a LVESVi-PRS >95%. CONCLUSIONS: Reduced EF occurs in approximately 1 in 6 elite endurance athletes and is related to genetic predisposition in addition to exercise training. Genetic and imaging markers may help identify endurance athletes in whom scrutiny about long-term clinical outcomes may be appropriate. REGISTRATION: URL: https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=374976&isReview=true; Unique identifier: ACTRN12618000716268.


Subject(s)
Athletes , Cardiomyopathy, Dilated , Stroke Volume , Humans , Male , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/physiopathology , Cardiomyopathy, Dilated/diagnostic imaging , Female , Adult , Young Adult , Physical Endurance/genetics , Adolescent , Genetic Predisposition to Disease , Ventricular Remodeling , Ventricular Function, Left
4.
Circulation ; 148(25): 2029-2037, 2023 12 19.
Article in English | MEDLINE | ID: mdl-37886885

ABSTRACT

BACKGROUND: In severely affected patients with catecholaminergic polymorphic ventricular tachycardia, beta-blockers are often insufficiently protective. The purpose of this study was to evaluate whether flecainide is associated with a lower incidence of arrhythmic events (AEs) when added to beta-blockers in a large cohort of patients with catecholaminergic polymorphic ventricular tachycardia. METHODS: From 2 international registries, this multicenter case cross-over study included patients with a clinical or genetic diagnosis of catecholaminergic polymorphic ventricular tachycardia in whom flecainide was added to beta-blocker therapy. The study period was defined as the period in which background therapy (ie, beta-blocker type [beta1-selective or nonselective]), left cardiac sympathetic denervation, and implantable cardioverter defibrillator treatment status, remained unchanged within individual patients and was divided into pre-flecainide and on-flecainide periods. The primary end point was AEs, defined as sudden cardiac death, sudden cardiac arrest, appropriate implantable cardioverter defibrillator shock, and arrhythmic syncope. The association of flecainide with AE rates was assessed using a generalized linear mixed model assuming negative binomial distribution and random effects for patients. RESULTS: A total of 247 patients (123 [50%] females; median age at start of flecainide, 18 years [interquartile range, 14-29]; median flecainide dose, 2.2 mg/kg per day [interquartile range, 1.7-3.1]) were included. At baseline, all patients used a beta-blocker, 70 (28%) had an implantable cardioverter defibrillator, and 21 (9%) had a left cardiac sympathetic denervation. During a median pre-flecainide follow-up of 2.1 years (interquartile range, 0.4-7.2), 41 patients (17%) experienced 58 AEs (annual event rate, 5.6%). During a median on-flecainide follow-up of 2.9 years (interquartile range, 1.0-6.0), 23 patients (9%) experienced 38 AEs (annual event rate, 4.0%). There were significantly fewer AEs after initiation of flecainide (incidence rate ratio, 0.55 [95% CI, 0.38-0.83]; P=0.007). Among patients who were symptomatic before diagnosis or during the pre-flecainide period (n=167), flecainide was associated with significantly fewer AEs (incidence rate ratio, 0.49 [95% CI, 0.31-0.77]; P=0.002). Among patients with ≥1 AE on beta-blocker therapy (n=41), adding flecainide was also associated with significantly fewer AEs (incidence rate ratio, 0.25 [95% CI, 0.14-0.45]; P<0.001). CONCLUSIONS: For patients with catecholaminergic polymorphic ventricular tachycardia, adding flecainide to beta-blocker therapy was associated with a lower incidence of AEs in the overall cohort, in symptomatic patients, and particularly in patients with breakthrough AEs while on beta-blocker therapy.


Subject(s)
Defibrillators, Implantable , Tachycardia, Ventricular , Female , Humans , Adolescent , Male , Flecainide/adverse effects , Incidence , Cross-Over Studies , Tachycardia, Ventricular/diagnosis , Tachycardia, Ventricular/drug therapy , Tachycardia, Ventricular/epidemiology , Adrenergic beta-Antagonists/adverse effects , Death, Sudden, Cardiac/epidemiology , Death, Sudden, Cardiac/etiology , Death, Sudden, Cardiac/prevention & control
5.
Eur Heart J ; 44(35): 3357-3370, 2023 09 14.
Article in English | MEDLINE | ID: mdl-37528649

ABSTRACT

AIMS: Calmodulinopathy due to mutations in any of the three CALM genes (CALM1-3) causes life-threatening arrhythmia syndromes, especially in young individuals. The International Calmodulinopathy Registry (ICalmR) aims to define and link the increasing complexity of the clinical presentation to the underlying molecular mechanisms. METHODS AND RESULTS: The ICalmR is an international, collaborative, observational study, assembling and analysing clinical and genetic data on CALM-positive patients. The ICalmR has enrolled 140 subjects (median age 10.8 years [interquartile range 5-19]), 97 index cases and 43 family members. CALM-LQTS and CALM-CPVT are the prevalent phenotypes. Primary neurological manifestations, unrelated to post-anoxic sequelae, manifested in 20 patients. Calmodulinopathy remains associated with a high arrhythmic event rate (symptomatic patients, n = 103, 74%). However, compared with the original 2019 cohort, there was a reduced frequency and severity of all cardiac events (61% vs. 85%; P = .001) and sudden death (9% vs. 27%; P = .008). Data on therapy do not allow definitive recommendations. Cardiac structural abnormalities, either cardiomyopathy or congenital heart defects, are present in 30% of patients, mainly CALM-LQTS, and lethal cases of heart failure have occurred. The number of familial cases and of families with strikingly different phenotypes is increasing. CONCLUSION: Calmodulinopathy has pleiotropic presentations, from channelopathy to syndromic forms. Clinical severity ranges from the early onset of life-threatening arrhythmias to the absence of symptoms, and the percentage of milder and familial forms is increasing. There are no hard data to guide therapy, and current management includes pharmacological and surgical antiadrenergic interventions with sodium channel blockers often accompanied by an implantable cardioverter-defibrillator.


Subject(s)
Calmodulin , Long QT Syndrome , Tachycardia, Ventricular , Child , Humans , Calmodulin/genetics , Death, Sudden, Cardiac/etiology , Long QT Syndrome/diagnosis , Long QT Syndrome/genetics , Mutation/genetics , Registries , Tachycardia, Ventricular/diagnosis , Tachycardia, Ventricular/genetics
6.
Am Heart J ; 266: 48-60, 2023 12.
Article in English | MEDLINE | ID: mdl-37595658

ABSTRACT

BACKGROUND: Recently, an expert consensus statement proposed indications where implantation of a primary prevention implantable cardioverter-defibrillator (ICD) may be reasonable in patients with mitral valve prolapse (MVP). The objective was to evaluate the proposed risk stratification by the expert consensus statement. METHODS: Consecutive patients with MVP without alternative arrhythmic substrates with cardiac magnetic resonance imaging (CMR) were included in a single-center retrospective registry. Arrhythmic MVP (AMVP) was defined as a total premature ventricular complex burden ≥5%, non-sustained ventricular tachycardia (VT), VT, or ventricular fibrillation. The end point was a composite of SCD, VT, inducible VT, and appropriate ICD shocks. RESULTS: In total, 169 patients (52.1% male, median age 51.4 years) were included and 99 (58.6%) were classified as AMVP. Multivariate logistic regression identified the presence of late gadolinium enhancement (OR 2.82, 95%CI 1.45-5.50) and mitral annular disjunction (OR 1.98, 95%CI 1.02-3.86) as only predictors of AMVP. According to the EHRA risk stratification, 5 patients with AMVP (5.1%) had a secondary prevention ICD indication, while in 69 patients (69.7%) the implantation of an ICD may be reasonable. During a median follow-up of 8.0 years (IQR 5.0-15.6), the incidence rate for the composite arrhythmic end point was 0.3%/year (95%CI 0.1-0.8). CONCLUSION: More than half of MVP patients referred for CMR met the AMVP diagnostic criteria. Despite low long-term event rates, in 70% of patients with AMVP the implantation of an ICD may be reasonable. Risk stratification of SCD in MVP remains an important knowledge gap and requires urgent investigation.


Subject(s)
Mitral Valve Prolapse , Ventricular Premature Complexes , Humans , Male , Middle Aged , Female , Mitral Valve Prolapse/complications , Mitral Valve Prolapse/diagnosis , Contrast Media , Retrospective Studies , Gadolinium , Mitral Valve , Risk Assessment
7.
Neth Heart J ; 31(11): 444-451, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37347419

ABSTRACT

BACKGROUND: In sudden cardiac arrest survivors without an immediately identifiable cause, additional extensive yet individualised testing is required. METHODS: We describe 3 survivors of sudden cardiac arrest in whom exercise stress testing was not performed during the initial hospital admission. RESULTS: All 3 patients were incorrectly diagnosed with long QT syndrome based on temporary sudden cardiac arrest-related heart rate-corrected QT interval prolongation, and exercise stress testing was not performed during the initial work-up. When they were subjected to exercise stress testing during follow-up, a delayed diagnosis of catecholaminergic polymorphic ventricular tachycardia (CPVT) was made. As a result, these patients were initially managed inappropriately, and their family members were initially not screened for CPVT. CONCLUSION: In sudden cardiac arrest survivors without an immediately identifiable cause, omission of exercise stress testing or erroneous interpretation of the results can lead to a delayed or missed diagnosis of CPVT, which may have considerable implications for survivors and their family.

8.
Front Cardiovasc Med ; 10: 1097468, 2023.
Article in English | MEDLINE | ID: mdl-37252121

ABSTRACT

Aims: Diagnosis of Long QT syndrome (LQTS) is based on prolongation of the QT interval corrected for heart rate (QTc) on surface ECG and genotyping. However, up to 25% of genotype positive patients have a normal QTc interval. We recently showed that individualized QT interval (QTi) derived from 24 h holter data and defined as the QT value at the intersection of an RR interval of 1,000 ms with the linear regression line fitted through QT-RR data points of each individual patient was superior over QTc to predict mutation status in LQTS families. This study aimed to confirm the diagnostic value of QTi, fine-tune its cut-off value and evaluate intra-individual variability in patients with LQTS. Methods: From the Telemetric and Holter ECG Warehouse, 201 recordings from control individuals and 393 recordings from 254 LQTS patients were analysed. Cut-off values were obtained from ROC curves and validated against an in house LQTS and control cohort. Results: ROC curves indicated very good discrimination between controls and LQTS patients with QTi, both in females (AUC 0.96) and males (AUC 0.97). Using a gender dependent cut-off of 445 ms in females and 430 ms in males, a sensitivity of 88% and specificity of 96% were achieved, which was confirmed in the validation cohort. No significant intra-individual variability in QTi was observed in 76 LQTS patients for whom at least two holter recordings were available (483 ± 36 ms vs. 489 ± 42 ms, p = 0.11). Conclusions: This study confirms our initial findings and supports the use of QTi in the evaluation of LQTS families. Using the novel gender dependent cut-off values, a high diagnostic accuracy was achieved.

9.
Eur Heart J Cardiovasc Imaging ; 24(8): 1009-1016, 2023 07 24.
Article in English | MEDLINE | ID: mdl-37114736

ABSTRACT

AIMS: Papillary muscle (PM) abnormalities are considered part of the phenotypic spectrum of hypertrophic cardiomyopathy (HCM). The aim of this study was to evaluate the presence and frequency of PM displacement in different HCM phenotypes. METHODS AND RESULTS: We retrospectively analysed cardiovascular magnetic resonance (CMR) findings in 156 patients (25% females, median age 57 years). Patients were divided into three groups: septal hypertrophy (Sep-HCM, n = 70, 45%), mixed hypertrophy (Mixed-HCM, n = 48, 31%), and apical hypertrophy (Ap-HCM, n = 38, 24%). Fifty-five healthy subjects were enrolled as controls. Apical PM displacement was observed in 13% of controls and 55% of patients, which was most common in the Ap-HCM group, followed by the Mixed-HCM and Sep-HCM groups (respectively: inferomedial PM 92 vs. 65 vs. 13%, P < 0.001; anterolateral PM 61 vs. 40 vs. 9%, P < 0.001). Significant differences in PM displacement were found when comparing healthy controls with patients with Ap- and Mixed-HCM subtypes but not when comparing them with patients with the Sep-HCM subtype. T-wave inversion in the inferior and lateral leads was more frequent in patients with Ap-HCM (100 and 65%, respectively) when compared with Mixed-HCM (89 and 29%, respectively) and Sep-HCM (57 and 17%, respectively; P < 0.001 for both). Eight patients with Ap-HCM had prior CMR examinations because of T-wave inversion [median interval 7 (3-8) years], and in the first CMR study, none showed apical hypertrophy [median apical wall thickness 8 (7-9) mm], while all of them presented with apical PM displacement. CONCLUSION: Apical PM displacement is part of the phenotypic Ap-HCM spectrum and may precede the development of hypertrophy. These observations suggest a potential pathogenetic, mechanical link between apical PM displacement and Ap-HCM.


Subject(s)
Apical Hypertrophic Cardiomyopathy , Cardiomyopathy, Hypertrophic , Female , Humans , Middle Aged , Male , Papillary Muscles/diagnostic imaging , Papillary Muscles/pathology , Retrospective Studies , Cardiomyopathy, Hypertrophic/pathology , Hypertrophy/pathology , Phenotype , Arrhythmias, Cardiac
10.
Eur J Hum Genet ; 31(11): 1323-1332, 2023 11.
Article in English | MEDLINE | ID: mdl-37032351

ABSTRACT

Whereas truncating variants of the giant protein Titin (TTNtv) are the main cause of familial dilated cardiomyopathy (DCM), recently Filamin C truncating variants (FLNCtv) were identified as a cause of arrhythmogenic cardiomyopathy (ACM). Our aim was to characterize and compare clinical and MRI features of TTNtv and FLNCtv in the Belgian population. In index patients referred for genetic testing of ACM/DCM, FLNCtv and TTNtv were found in 17 (3.6%) and 33 (12.3%) subjects, respectively. Further family cascade screening yielded 24 and 19 additional truncating variant carriers in FLNC and TTN, respectively. The main phenotype was ACM in FLNCtv carriers whereas TTNtv carriers showed either an ACM or DCM phenotype. Non-sustained Ventricular Tachycardia was frequent in both populations. MRI data, available in 28/40 FLNCtv and 32/52 TTNtv patients, showed lower Left Ventricular (LV) ejection fraction and lower LV strain in TTNtv patients (p < 0.01). Conversely, both the frequency (68% vs 22%) and extent of non-ischemic myocardial late gadolinium enhancement (LGE) was significantly higher in FLNCtv patients (p < 0.01). Hereby, ring-like LGE was found in 16/19 (84%) FLNCtv versus 1/7 (14%) of TTNtv patients (p < 0.01). In conclusion, a large number of FLNCtv and TTNtv patients present with an ACM phenotype but can be separated by cardiac MRI. Whereas FLNCtv patients often have extensive myocardial fibrosis, typically following a ring-like pattern, LV dysfunction without or limited replacement fibrosis is the common TTNtv phenotype.


Subject(s)
Contrast Media , Gadolinium , Humans , Connectin/genetics , Filamins/genetics , Fibrosis , Magnetic Resonance Imaging
11.
BMC Med ; 20(1): 162, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35501785

ABSTRACT

BACKGROUND: Congenital long QT syndrome (LQTS) is a rare heart disease caused by various underlying mutations. Most general cardiologists do not routinely see patients with congenital LQTS and may not always recognize the accompanying ECG features. In addition, a proportion of disease carriers do not display obvious abnormalities on their ECG. Combined, this can cause underdiagnosing of this potentially life-threatening disease. METHODS: This study presents 1D convolutional neural network models trained to identify genotype positive LQTS patients from electrocardiogram as input. The deep learning (DL) models were trained with a large 10-s 12-lead ECGs dataset provided by Amsterdam UMC and externally validated with a dataset provided by University Hospital Leuven. The Amsterdam dataset included ECGs from 10000 controls, 172 LQTS1, 214 LQTS2, and 72 LQTS3 patients. The Leuven dataset included ECGs from 2200 controls, 32 LQTS1, and 80 LQTS2 patients. The performance of the DL models was compared with conventional QTc measurement and with that of an international expert in congenital LQTS (A.A.M.W). Lastly, an explainable artificial intelligence (AI) technique was used to better understand the prediction models. RESULTS: Overall, the best performing DL models, across 5-fold cross-validation, achieved on average a sensitivity of 84 ± 2%, 90 ± 2% and 87 ± 6%, specificity of 96 ± 2%, 95 ± 1%, and 92 ± 4%, and AUC of 0.90 ± 0.01, 0.92 ± 0.02, and 0.89 ± 0.03, for LQTS 1, 2, and 3 respectively. The DL models were also shown to perform better than conventional QTc measurements in detecting LQTS patients. Furthermore, the performances held up when the DL models were validated on a novel external cohort and outperformed the expert cardiologist in terms of specificity, while in terms of sensitivity, the DL models and the expert cardiologist in LQTS performed the same. Finally, the explainable AI technique identified the onset of the QRS complex as the most informative region to classify LQTS from non-LQTS patients, a feature previously not associated with this disease. CONCLUSIONS: This study suggests that DL models can potentially be used to aid cardiologists in diagnosing LQTS. Furthermore, explainable DL models can be used to possibly identify new features for LQTS on the ECG, thus increasing our understanding of this syndrome.


Subject(s)
Deep Learning , Long QT Syndrome , Artificial Intelligence , Electrocardiography/methods , Humans , Long QT Syndrome/congenital , Long QT Syndrome/diagnosis , Long QT Syndrome/genetics , Neural Networks, Computer
12.
Circulation ; 145(5): 333-344, 2022 02.
Article in English | MEDLINE | ID: mdl-34874747

ABSTRACT

BACKGROUND: Symptomatic children with catecholaminergic polymorphic ventricular tachycardia (CPVT) are at risk for recurrent arrhythmic events. ß-Blockers decrease this risk, but studies comparing individual ß-blockers in sizeable cohorts are lacking. We aimed to assess the association between risk for arrhythmic events and type of ß-blocker in a large cohort of symptomatic children with CPVT. METHODS: From 2 international registries of patients with CPVT, RYR2 variant-carrying symptomatic children (defined as syncope or sudden cardiac arrest before ß-blocker initiation and age at start of ß-blocker therapy <18 years), treated with a ß-blocker were included. Cox regression analyses with time-dependent covariates for ß-blockers and potential confounders were used to assess the hazard ratio (HR). The primary outcome was the first occurrence of sudden cardiac death, sudden cardiac arrest, appropriate implantable cardioverter-defibrillator shock, or syncope. The secondary outcome was the first occurrence of any of the primary outcomes except syncope. RESULTS: We included 329 patients (median age at diagnosis, 12 [interquartile range, 7-15] years, 35% females). Ninety-nine (30.1%) patients experienced the primary outcome and 74 (22.5%) experienced the secondary outcome during a median follow-up of 6.7 (interquartile range, 2.8-12.5) years. Two-hundred sixteen patients (66.0%) used a nonselective ß-blocker (predominantly nadolol [n=140] or propranolol [n=70]) and 111 (33.7%) used a ß1-selective ß-blocker (predominantly atenolol [n=51], metoprolol [n=33], or bisoprolol [n=19]) as initial ß-blocker. Baseline characteristics did not differ. The HRs for both the primary and secondary outcomes were higher for ß1-selective compared with nonselective ß-blockers (HR, 2.04 [95% CI, 1.31-3.17]; and HR, 1.99 [95% CI, 1.20-3.30], respectively). When assessed separately, the HR for the primary outcome was higher for atenolol (HR, 2.68 [95% CI, 1.44-4.99]), bisoprolol (HR, 3.24 [95% CI, 1.47-7.18]), and metoprolol (HR, 2.18 [95% CI, 1.08-4.40]) compared with nadolol, but did not differ from propranolol. The HR of the secondary outcome was only higher in atenolol compared with nadolol (HR, 2.68 [95% CI, 1.30-5.55]). CONCLUSIONS: ß1-selective ß-blockers were associated with a significantly higher risk for arrhythmic events in symptomatic children with CPVT compared with nonselective ß-blockers, specifically nadolol. Nadolol, or propranolol if nadolol is unavailable, should be the preferred ß-blocker for treating symptomatic children with CPVT.


Subject(s)
Adrenergic beta-Antagonists/therapeutic use , Tachycardia, Ventricular/drug therapy , Adolescent , Adrenergic beta-Antagonists/pharmacology , Child , Cohort Studies , Female , Humans , Male
13.
Pacing Clin Electrophysiol ; 44(10): 1756-1768, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34406664

ABSTRACT

BACKGROUND: Cryoballoon ablation (CRYO) for pulmonary vein isolation (PVI) in atrial fibrillation (AF) has become an established treatment option as alternative for radiofrequency catheter ablation (RFCA). As symptom relief is still the main indication for PVI, quality of life (QoL) is a key outcome parameter. This review summarizes the evidence about the evolution of QoL after CRYO. METHODS: A search for clinical studies reporting QoL outcomes after CRYO was performed on PUBMED and COCHRANE. A total of 506 publications were screened and 10 studies met the in- and exclusion criteria. RESULTS: All studies considered QoL as a secondary endpoint and reported significant improvement in QoL between baseline and 12 months follow-up, independent of the QoL instruments used. The effect size of CRYO on QoL was comparable between studies and present in both paroxysmal and persistent AF. Direct comparison between CRYO and RFCA was limited to two studies, there was no difference between ablation modalities after 12 months FU. Two studies in paroxysmal AF reported outcome beyond 12 months follow-up and QoL improvement was maintained up to 36 months after ablation. There were no long-term data available for persistent AF. CONCLUSION: CRYO of AF significantly improves QoL. The scarce amount of data with direct comparison between subgroups limits further exploration. Assessment of QoL should be considered a primary outcome parameter in future trials with long-term follow-up.


Subject(s)
Atrial Fibrillation/surgery , Cryosurgery/methods , Pulmonary Veins/surgery , Quality of Life , Humans
14.
Europace ; 23(6): 918-927, 2021 06 07.
Article in English | MEDLINE | ID: mdl-33221854

ABSTRACT

AIMS: We identified the first Belgian SCN5A founder mutation, c.4813 + 3_4813 + 6dupGGGT. To describe the clinical spectrum and disease severity associated with this mutation, clinical data of 101 SCN5A founder mutation carriers and 46 non-mutation carrying family members from 25 Belgian families were collected. METHODS AND RESULTS: The SCN5A founder mutation was confirmed by haplotype analysis. The clinical history and electrocardiographic parameters of the mutation carriers and their family members were gathered and compared. A cardiac electrical abnormality was observed in the majority (82%) of the mutation carriers. Cardiac conduction defects, defined as PR or QRS prolongation on electrocardiogram (ECG), were most frequent, occurring in 65% of the mutation carriers. Brugada syndrome (BrS) was the second most prevalent phenotype identified in 52%, followed by atrial dysrythmia in 11%. Overall, 33% of tested mutation carriers had a normal sodium channel blocker test. Negative tests were more common in family members distantly related to the proband. Overall, 23% of the mutation carriers were symptomatic, with 8% displaying major adverse events. As many as 13% of the patients tested with a sodium blocker developed ventricular arrhythmia. One family member who did not carry the founder mutation was diagnosed with BrS. CONCLUSION: The high prevalence of symptoms and sensitivity to sodium channel blockers in our founder population highlights the adverse effect of the founder mutation on cardiac conduction. The large phenotypical heterogeneity, variable penetrance, and even non-segregation suggest that other genetic (and environmental) factors modify the disease expression, severity, and outcome in these families.


Subject(s)
Brugada Syndrome , NAV1.5 Voltage-Gated Sodium Channel , Belgium/epidemiology , Electrocardiography , Humans , Mutation , NAV1.5 Voltage-Gated Sodium Channel/genetics , Phenotype
15.
Circulation ; 142(10): 932-947, 2020 09 08.
Article in English | MEDLINE | ID: mdl-32693635

ABSTRACT

BACKGROUND: Genetic variants in calsequestrin-2 (CASQ2) cause an autosomal recessive form of catecholaminergic polymorphic ventricular tachycardia (CPVT), although isolated reports have identified arrhythmic phenotypes among heterozygotes. Improved insight into the inheritance patterns, arrhythmic risks, and molecular mechanisms of CASQ2-CPVT was sought through an international multicenter collaboration. METHODS: Genotype-phenotype segregation in CASQ2-CPVT families was assessed, and the impact of genotype on arrhythmic risk was evaluated using Cox regression models. Putative dominant CASQ2 missense variants and the established recessive CASQ2-p.R33Q variant were evaluated using oligomerization assays and their locations mapped to a recent CASQ2 filament structure. RESULTS: A total of 112 individuals, including 36 CPVT probands (24 homozygotes/compound heterozygotes and 12 heterozygotes) and 76 family members possessing at least 1 presumed pathogenic CASQ2 variant, were identified. Among CASQ2 homozygotes and compound heterozygotes, clinical penetrance was 97.1% and 26 of 34 (76.5%) individuals had experienced a potentially fatal arrhythmic event with a median age of onset of 7 years (95% CI, 6-11). Fifty-one of 66 CASQ2 heterozygous family members had undergone clinical evaluation, and 17 of 51 (33.3%) met diagnostic criteria for CPVT. Relative to CASQ2 heterozygotes, CASQ2 homozygote/compound heterozygote genotype status in probands was associated with a 3.2-fold (95% CI, 1.3-8.0; P=0.013) increased hazard of a composite of cardiac syncope, aborted cardiac arrest, and sudden cardiac death, but a 38.8-fold (95% CI, 5.6-269.1; P<0.001) increased hazard in genotype-positive family members. In vitro turbidity assays revealed that p.R33Q and all 6 candidate dominant CASQ2 missense variants evaluated exhibited filamentation defects, but only p.R33Q convincingly failed to dimerize. Structural analysis revealed that 3 of these 6 putative dominant negative missense variants localized to an electronegative pocket considered critical for back-to-back binding of dimers. CONCLUSIONS: This international multicenter study of CASQ2-CPVT redefines its heritability and confirms that pathogenic heterozygous CASQ2 variants may manifest with a CPVT phenotype, indicating a need to clinically screen these individuals. A dominant mode of inheritance appears intrinsic to certain missense variants because of their location and function within the CASQ2 filament structure.


Subject(s)
Calsequestrin/genetics , Heterozygote , Homozygote , Mutation, Missense , Tachycardia, Ventricular/genetics , Female , Humans , Male , Risk Factors
16.
Circulation ; 142(4): 324-338, 2020 07 28.
Article in English | MEDLINE | ID: mdl-32429735

ABSTRACT

BACKGROUND: Long QT syndrome (LQTS) is a rare genetic disorder and a major preventable cause of sudden cardiac death in the young. A causal rare genetic variant with large effect size is identified in up to 80% of probands (genotype positive) and cascade family screening shows incomplete penetrance of genetic variants. Furthermore, a proportion of cases meeting diagnostic criteria for LQTS remain genetically elusive despite genetic testing of established genes (genotype negative). These observations raise the possibility that common genetic variants with small effect size contribute to the clinical picture of LQTS. This study aimed to characterize and quantify the contribution of common genetic variation to LQTS disease susceptibility. METHODS: We conducted genome-wide association studies followed by transethnic meta-analysis in 1656 unrelated patients with LQTS of European or Japanese ancestry and 9890 controls to identify susceptibility single nucleotide polymorphisms. We estimated the common variant heritability of LQTS and tested the genetic correlation between LQTS susceptibility and other cardiac traits. Furthermore, we tested the aggregate effect of the 68 single nucleotide polymorphisms previously associated with the QT-interval in the general population using a polygenic risk score. RESULTS: Genome-wide association analysis identified 3 loci associated with LQTS at genome-wide statistical significance (P<5×10-8) near NOS1AP, KCNQ1, and KLF12, and 1 missense variant in KCNE1(p.Asp85Asn) at the suggestive threshold (P<10-6). Heritability analyses showed that ≈15% of variance in overall LQTS susceptibility was attributable to common genetic variation (h2SNP 0.148; standard error 0.019). LQTS susceptibility showed a strong genome-wide genetic correlation with the QT-interval in the general population (rg=0.40; P=3.2×10-3). The polygenic risk score comprising common variants previously associated with the QT-interval in the general population was greater in LQTS cases compared with controls (P<10-13), and it is notable that, among patients with LQTS, this polygenic risk score was greater in patients who were genotype negative compared with those who were genotype positive (P<0.005). CONCLUSIONS: This work establishes an important role for common genetic variation in susceptibility to LQTS. We demonstrate overlap between genetic control of the QT-interval in the general population and genetic factors contributing to LQTS susceptibility. Using polygenic risk score analyses aggregating common genetic variants that modulate the QT-interval in the general population, we provide evidence for a polygenic architecture in genotype negative LQTS.


Subject(s)
Genetic Predisposition to Disease , Genome-Wide Association Study , Long QT Syndrome/genetics , Adolescent , Adult , Age of Onset , Alleles , Case-Control Studies , Electrocardiography , Genetic Association Studies , Genome-Wide Association Study/methods , Genotype , Humans , Long QT Syndrome/diagnosis , Long QT Syndrome/mortality , Long QT Syndrome/therapy , Multifactorial Inheritance , Phenotype , Polymorphism, Single Nucleotide , Prognosis , Severity of Illness Index , Young Adult
17.
Heart Rhythm ; 17(9): 1456-1462, 2020 09.
Article in English | MEDLINE | ID: mdl-32244059

ABSTRACT

Ever since the first case was reported at the end of 2019, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the associated coronavirus disease 2019 (COVID-19) has become a serious threat to public health globally in short time. At this point in time, there is no proven effective therapy. The interactions with concomitant disease are largely unknown, and that may be particularly pertinent to inherited arrhythmia syndrome. An arrhythmogenic effect of COVID-19 can be expected, potentially contributing to disease outcome. This may be of importance for patients with an increased risk of cardiac arrhythmias, either secondary to acquired conditions or comorbidities or consequent to inherited syndromes. Management of patients with inherited arrhythmia syndromes such as long QT syndrome, Brugada syndrome, short QT syndrome, and catecholaminergic polymorphic ventricular tachycardia in the setting of the COVID-19 pandemic may prove particularly challenging. Depending on the inherited defect involved, these patients may be susceptible to proarrhythmic effects of COVID-19-related issues such as fever, stress, electrolyte disturbances, and use of antiviral drugs. Here, we describe the potential COVID-19-associated risks and therapeutic considerations for patients with distinct inherited arrhythmia syndromes and provide recommendations, pending local possibilities, for their monitoring and management during this pandemic.


Subject(s)
Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/therapy , Betacoronavirus , Coronavirus Infections/complications , Pneumonia, Viral/complications , Arrhythmias, Cardiac/virology , COVID-19 , Coronavirus Infections/diagnosis , Coronavirus Infections/therapy , Humans , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/therapy , SARS-CoV-2 , Syndrome
18.
Circ Arrhythm Electrophysiol ; 13(3): e007471, 2020 03.
Article in English | MEDLINE | ID: mdl-32063070

ABSTRACT

BACKGROUND: Risk stratification in catecholaminergic polymorphic ventricular tachycardia remains ill defined. Heart rate recovery (HRR) immediately after exercise is regulated by autonomic reflexes, particularly vagal tone, and may be associated with symptoms and ventricular arrhythmias in patients with catecholaminergic polymorphic ventricular tachycardia. Our objective was to evaluate whether HRR after maximal exercise on the exercise stress test (EST) is associated with symptoms and ventricular arrhythmias. METHODS: In this retrospective observational study, we included patients ≤65 years of age with an EST without antiarrhythmic drugs who attained at least 80% of their age- and sex-predicted maximal HR. HRR in the recovery phase was calculated as the difference in heart rate (HR) at maximal exercise and at 1 minute in the recovery phase (ΔHRR1'). RESULTS: We included 187 patients (median age, 36 years; 68 [36%] symptomatic before diagnosis). Pre-EST HR and maximal HR were equal among symptomatic and asymptomatic patients. Patients who were symptomatic before diagnosis had a greater ΔHRR1' after maximal exercise (43 [interquartile range, 25-58] versus 25 [interquartile range, 19-34] beats/min; P<0.001). Corrected for age, sex, and relatedness, patients in the upper tertile for ΔHRR1' had an odds ratio of 3.4 (95% CI, 1.6-7.4) of being symptomatic before diagnosis (P<0.001). In addition, ΔHRR1' was higher in patients with complex ventricular arrhythmias at EST off antiarrhythmic drugs (33 [interquartile range, 22-48] versus 27 [interquartile range, 20-36] beats/min; P=0.01). After diagnosis, patients with a ΔHRR1' in the upper tertile of its distribution had significantly more arrhythmic events as compared with patients in the other tertiles (P=0.045). CONCLUSIONS: Catecholaminergic polymorphic ventricular tachycardia patients with a larger HRR following exercise are more likely to be symptomatic and have complex ventricular arrhythmias during the first EST off antiarrhythmic drug.


Subject(s)
Exercise/physiology , Heart Rate/physiology , Recovery of Function/physiology , Tachycardia, Ventricular/physiopathology , Adult , Electrocardiography , Exercise Test , Female , Follow-Up Studies , Humans , Male , Middle Aged , Retrospective Studies , Tachycardia, Ventricular/diagnosis , Vagus Nerve/physiopathology , Young Adult
19.
Heart Rhythm ; 17(5 Pt A): 752-758, 2020 05.
Article in English | MEDLINE | ID: mdl-31917370

ABSTRACT

BACKGROUND: Diagnosing long QT syndrome (LQTS) remains challenging because of a considerable overlap in QT interval between patients with LQTS and healthy subjects. Characterizing T-wave morphology might improve LQTS diagnosis. OBJECTIVE: The purpose of this study was to improve LQTS diagnosis by combining new polynomial-based T-wave morphology parameters with the corrected QT interval (QTc), age, and sex in a model. METHODS: A retrospective cohort consisting of 333 patients with LQTS and 345 genotype-negative family members was used in this study. For each patient, a linear combination of the first 2 Hermite-Gauss (HG) polynomials was fitted to the STT segments of an average complex of all precordial leads and limb leads I and II. The weight coefficients as well as the error of the best fit were used to characterize T-wave morphology. Subjects were classified as patients with LQTS or controls by clinical QTc cutoffs and 3 support vector machine models fed with different features. An external cohort consisting of 72 patients and 45 controls was finally used to check the robustness of the models. RESULTS: Baseline QTc cutoffs were specific but had low sensitivity in diagnosing LQTS. The model with T-wave morphology features, QTc, age, and sex had the best overall accuracy (84%), followed by a model with QTc, age, and sex (79%). The model with T-wave morphology features especially performed better in LQTS type 3 patients (69%). CONCLUSION: T-wave morphologies can be characterized by fitting a linear combination of the first 2 Hermite-Gauss polynomials. Adding T-wave morphology characterization to age, sex, and QTc in a support vector machine model improves LQTS diagnosis.


Subject(s)
Algorithms , Electrocardiography/methods , Long QT Syndrome/diagnosis , Machine Learning , Adult , Female , Follow-Up Studies , Genotype , Humans , Long QT Syndrome/genetics , Long QT Syndrome/physiopathology , Male , Middle Aged , Reproducibility of Results , Retrospective Studies , Signal Processing, Computer-Assisted
20.
Acta Cardiol ; 75(8): 748-753, 2020 Dec.
Article in English | MEDLINE | ID: mdl-31583969

ABSTRACT

Background: Familial dilated cardiomyopathy (DCM) is genetically heterogeneous and is associated with mutations in at least 40 different genes. Apart from TTN encoding the giant protein Titin, none of these genes have an expected diagnostic yield of more than 5% complicating genetic diagnosis. Whole exome sequencing (WES) is a powerful alternative for the identification of the causal gene, however variant interpretation remains challenging. We report on WES in a large family with autosomal dominant DCM complicated by end stage heart failure and non-sustained ventricular arrhythmias in whom no causative mutation was identified using a targeted gene panel including 28 genes.Methods and results: WES was applied on 2 affected cousins. Stringent filtering of the identified genetic variants was performed including population variant frequencies, in silico analysis, orthologous and paralogous conservation. Subsequently Sanger sequencing was performed for 10 potential disease causing variants in order to confirm the presence of the variant and to evaluate co-segregation. Only one variant in exon 9 of the RBM20 gene (c.2714T > A, p.Met950Lys, NM_001334363) showed full co-segregation in the 7 affected family members resulting in a maximum 2-point LOD score of 2.1 and suggesting this as the pathogenic mutation responsible for the phenotype. Recently mutations in RBM20 have been linked to arrhythmogenic dilated cardiomyopathy caused by defective splicing of the giant sarcomere protein titin and abnormal calcium handling.Conclusions: We report the identification of a novel mutation in RBM20 by WES in a large pedigree with DCM.


Subject(s)
Cardiomyopathy, Dilated/genetics , DNA/genetics , Exome Sequencing/methods , Mutation , RNA-Binding Proteins/genetics , Adolescent , Adult , Cardiomyopathy, Dilated/metabolism , Child , DNA Mutational Analysis , Female , Genetic Predisposition to Disease , Humans , Male , Middle Aged , Pedigree , Phenotype , RNA-Binding Proteins/metabolism , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...