Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Small Methods ; 7(10): e2201725, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37391272

ABSTRACT

Heterogeneous bi-magnetic nanostructured systems have had a sustained interest during the last decades owing to their unique magnetic properties and the wide range of derived potential applications. However, elucidating the details of their magnetic properties can be rather complex. Here, a comprehensive study of Fe3 O4 /Mn3 O4 core/shell nanoparticles using polarized neutron powder diffraction, which allows disentangling the magnetic contributions of each of the components, is presented. The results show that while at low fields the Fe3 O4 and Mn3 O4 magnetic moments averaged over the unit cell are antiferromagnetically coupled, at high fields, they orient parallel to each other. This magnetic reorientation of the Mn3 O4 shell moments is associated with a gradual evolution with the applied field of the local magnetic susceptibility from anisotropic to isotropic. Additionally, the magnetic coherence length of the Fe3 O4 cores shows some unusual field dependence due to the competition between the antiferromagnetic interface interaction and the Zeeman energies. The results demonstrate the great potential of the quantitative analysis of polarized neutron powder diffraction for the study of complex multiphase magnetic materials.

2.
Phys Chem Chem Phys ; 16(34): 18301-10, 2014 Sep 14.
Article in English | MEDLINE | ID: mdl-25057849

ABSTRACT

To determine with precision how Bi atoms are distributed in Bi-doped iron oxide nanoparticles their structural characterization has been carried out by X-ray absorption spectroscopy (XAS) recorded at the K edge of Fe and at the L3 edge of Bi. The inorganic nanoparticles are nominally hybrid structures integrating an iron oxide core and a bismuth oxide shell. Fe K-edge XAS indicates the formation of a structurally ordered, non-stoichiometric magnetite (Fe3-δO4) phase for all the nanoparticles. The XAS spectra show that, in the samples synthesized by precipitation in aqueous media and laser pyrolysis, the Bi atoms neither enter into the iron oxide spinel lattice nor form any other mixed Bi-Fe oxides. No modification of the local structure around the Fe atoms induced by the Bi atoms is observed at the Fe K edge. In addition, contrary to expectations, our results indicate that the Bi atoms do not form a well-defined Bi oxide structure. The XAS study at the Bi L3 edge indicates that the environment around Bi atoms is highly disordered and only a first oxygen coordination shell is observed. Indefinite [BiO6-x(OH)x] units (isolated or aggregated forming tiny amorphous clusters) bonded through hydroxyl bridges to the nanoparticle, rather than a well defined Bi2O3 shell, surround the nanoparticle. On the other hand, the XAS study indicates that, in the samples synthesized by thermal decomposition, the Bi atoms are embedded in a longer range ordered structure showing the first and second neighbors.


Subject(s)
Bismuth/chemistry , Contrast Media/chemical synthesis , Magnetic Resonance Imaging/methods , Magnetite Nanoparticles/chemistry , Models, Chemical , Computer Simulation , Materials Testing , Models, Molecular , Molecular Conformation , Particle Size
3.
Nanotechnology ; 23(15): 155603, 2012 Apr 20.
Article in English | MEDLINE | ID: mdl-22456200

ABSTRACT

We report here a detailed structural and magnetic study of different silica nanocapsules containing uniform and highly crystalline maghemite nanoparticles. The magnetic phase consists of 5 nm triethylene glycol (TREG)- or dimercaptosuccinic acid (DMSA)-coated maghemite particles. TREG-coated nanoparticles were synthesized by thermal decomposition. In a second step, TREG ligands were exchanged by DMSA. After the ligand exchange, the ζ potential of the particles changed from -10 to -40 mV, whereas the hydrodynamic size remained constant at around 15 nm. Particles coated by TREG and DMSA were encapsulated in silica following a sol-gel procedure. The encapsulation of TREG-coated nanoparticles led to large magnetic aggregates, which were embedded in coalesced silica structures. However, DMSA-coated nanoparticles led to small magnetic clusters inserted in silica spheres of around 100 nm. The final nanostructures can be described as the result of several competing factors at play. Magnetic measurements indicate that in the TREG-coated nanoparticles the interparticle magnetic interaction scenario has not dramatically changed after the silica encapsulation, whereas in the DMSA-coated nanoparticles, the magnetic interactions were screened due to the function of the silica template. Moreover, the analysis of the AC susceptibility suggests that our systems essentially behave as cluster spin glass systems.

4.
Nanoscale Res Lett ; 5(2): 374-8, 2009 Nov 15.
Article in English | MEDLINE | ID: mdl-20672039

ABSTRACT

A semiconductor/metal nanocomposite is composed of a porosified silicon wafer and embedded ferromagnetic nanostructures. The obtained hybrid system possesses the electronic properties of silicon together with the magnetic properties of the incorporated ferromagnetic metal. On the one hand, a transition metal is electrochemically deposited from a metal salt solution into the nanostructured silicon skeleton, on the other hand magnetic particles of a few nanometres in size, fabricated in solution, are incorporated by immersion. The electrochemically deposited nanostructures can be tuned in size, shape and their spatial distribution by the process parameters, and thus specimens with desired ferromagnetic properties can be fabricated. Using magnetite nanoparticles for infiltration into porous silicon is of interest not only because of the magnetic properties of the composite material due to the possible modification of the ferromagnetic/superparamagnetic transition but also because of the biocompatibility of the system caused by the low toxicity of both materials. Thus, it is a promising candidate for biomedical applications as drug delivery or biomedical targeting.

5.
Nanotechnology ; 19(47): 475704, 2008 Nov 26.
Article in English | MEDLINE | ID: mdl-21836285

ABSTRACT

The effect of surface anisotropy on the distribution of energy barriers in magnetic fine particles of nanometer size is discussed within the framework of the Tln(t/τ(0)) scaling approach. The comparison between the distributions of the anisotropy energy of the particle cores, calculated by multiplying the volume distribution by the core anisotropy, and of the total anisotropy energy, deduced by deriving the master curve of the magnetic relaxation with respect to the scaling variable Tln(t/τ(0)), enables the determination of the surface anisotropy as a function of the particle size. We show that the contribution of the particle surface to the total anisotropy energy can be well described by a size-independent value of the surface energy per unit area which permits the superimposition of the distributions corresponding to the particle core and effective anisotropy energies. The method is applied to a ferrofluid composed of non-interacting Fe(3-x)O(4) particles of 4.9 nm average size and x about 0.07. Even though the size distribution is quite narrow in this system, a relatively small value of the effective surface anisotropy constant K(s) = 2.9 × 10(-2) erg cm(-2) gives rise to a dramatic broadening of the total energy distribution. The reliability of the average value of the effective anisotropy constant, deduced from magnetic relaxation data, is verified by comparing it to that obtained from the analysis of the shift of the ac susceptibility peaks as a function of the frequency.

SELECTION OF CITATIONS
SEARCH DETAIL
...