Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Dairy Sci ; 103(8): 7028-7038, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32475672

ABSTRACT

A continuous-culture fermentor study was conducted to assess nutrient digestibilities, volatile fatty acid (VFA) concentrations, microbial protein synthesis, bacterial nitrogen (N) efficiency, and enteric methane (CH4) production of four 50:50 grass-legume diets, randomly assigned in a 4 × 4 Latin square design. Four legumes with different concentrations of condensed tannins (CT) were tested: alfalfa [ALF; Medicago sativa L., non-CT legume]; birdsfoot trefoil [BFT; Lotus corniculatus L., low-CT legume]; crown vetch [CV; Securigera varia (L.) Lassen, moderate-CT legume]; and sericea lespedeza [SL; Lespedeza cuneata (Dum. Cours.) G. Don, high-CT legume]. Orchardgrass (Dactylis glomerata L.) was the common forage used in all diets. Four fermentors were evaluated over four 10-d periods by feeding 82 g of dry matter (DM)/d in 4 equal feedings. Methane output was recorded every 10 min. Effluent samples were collected during the last 3 d of the experiment, composited by fermentor and period, and analyzed for pH and VFA, as well as DM, organic matter, crude protein, neutral detergent fiber, and acid detergent fiber for determination of apparent and true nutrient digestibilities. Microbial protein synthesis and bacterial efficiency were estimated by analysis of N flows and purines. The CT concentrations were 3, 21, 38 and 76 g/kg of DM for ALF, BFT, CV, and SL diets, respectively. The SL diet had decreased fiber digestibilities and total VFA concentrations compared with the other diets. This resulted in the least total CH4 production in the SL diet. Bacterial N efficiency per kilogram of organic matter truly digested was lower in the SL diet than in the BFT and CV diets. The lowest CH4 production per unit of digestible nutrients was also found in the SL diet. Further work should be conducted to find optimal diets (by testing other legumes, rations, and sources of CT) for reducing CH4 emissions without negatively affecting ruminal digestion to maintain or improve productivity.


Subject(s)
Animal Feed/analysis , Bacteria/metabolism , Dactylis/chemistry , Fabaceae/chemistry , Methane/metabolism , Proanthocyanidins/analysis , Animals , Bioreactors/veterinary , Cattle , Diet/veterinary , Dietary Fiber/metabolism , Digestion , Fatty Acids, Volatile/analysis , Female , Fermentation , Hydrogen-Ion Concentration , Nitrogen/metabolism , Rumen/metabolism
2.
J Anim Physiol Anim Nutr (Berl) ; 103(5): 1313-1324, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31298448

ABSTRACT

A 4-unit, single-flow continuous culture fermenter system was developed to assess in vitro nutrient digestibility, volatile fatty acid (VFA) concentration and daily enteric methane (CH4 ) production of ruminant diets. The objective was to develop a closed-vessel system that maintained protozoal populations and provided accurate predictions of total CH4 production. A diet of 50% orchardgrass (Dactylis glomerata L.) and 50% alfalfa (Medicago sativa L.) was fed during 4, 10-day periods (7-day adaptation and 3-day collection). Fermenters were fed 82 g of dry matter (DM)/day in four equal feedings. pH and temperature were taken every 2 min, and CH4 concentration was measured every 10 min. Samples for DM and protozoal counts were taken daily, and daily effluent samples were collected for determination of DM, VFA and NH3 -N concentrations. There was no effect (p > 0.17) of adaptation versus collection days on vessel and effluent DM, temperature or pH. Initial protozoal counts decreased (p < 0.01), but recovered to initial counts by the collection period. Total VFA, acetate, propionate and isobutyrate concentrations did not differ (p ≥ 0.13) among periods or days of the collection period. There was no difference (p ≥ 0.37) among days or periods in total daily CH4 production and CH4 production per g of OM, NDF, digestible OM or digestible NDF fed. Data collected throughout 4 experimental periods demonstrated that the system was able to reach a steady state in fermentation well within the 7-day adaptation period and even typically variable data (i.e., CH4 production) were stable within and across periods. While further research is needed to determine the relationship between this system and in vivo data, this continuous culture fermenter system provides a valid comparison of in vitro ruminal fermentation and enteric CH4 production of ruminant diets that can then be further validated with in vivo studies.


Subject(s)
Bioreactors/veterinary , Methane/metabolism , Rumen/physiology , Animals , Cattle , Digestion/physiology , Fermentation , Hydrogen-Ion Concentration , Temperature
3.
J Anim Sci ; 96(4): 1362-1374, 2018 Apr 14.
Article in English | MEDLINE | ID: mdl-29471524

ABSTRACT

The aim of the current study was to determine nutrient digestibility, VFA production, N metabolism, and CH4 production of canola (Brassica napus L.), rapeseed (B. napus L.), turnip (Brassica rapa L.), and annual ryegrass (Lolium multiflorum Lam.) fed with orchardgrass (Dactylis glomerata L.) in continuous culture. Diets were randomly assigned to fermentors in a 4 × 4 Latin square design using 7 d for adaptation and 3 d for collection. Diets were: 1) 50% orchardgrass + 50% annual ryegrass (ARG); 2) 50% orchardgrass + 50% canola (CAN); 3) 50% orchardgrass + 50% rapeseed (RAP); and 4) 50% orchardgrass + 50% turnip (TUR). Feedings (82 g DM/d) occurred four times daily throughout 4, 10-d periods at 730, 1030, 1400, and 1900 h. Methane samples were collected every 10 min using a photoacoustic gas analyzer (LumaSense Technologies, Inc.; Santa Clara, CA) during the last 3 d of the experiment. Effluent samples were collected on d 8, 9, and 10, composited by fermentor, and analyzed for VFA and pH as well as DM, OM, CP, and fiber fractions for determination of nutrient digestibility. Forage samples were analyzed for CP, NDF, ADF, minerals, and glucosinolate (GLS) concentrations. Data were analyzed using the GLIMMIX procedure of SAS. Apparent DM, OM, and NDF digestibilities and true DM and OM digestibilities were similar (P > 0.28) among diets (45.1, 63.2, 44.1, 67.1, and 87.2%, respectively). Total VFA (87.2 mol/100 mol), pH (6.47), and acetate (A: 44.6 mol/100 mol) were also not different (P > 0.20) among diets. The A:P (P = propionate) ratio was greater (P < 0.01) in ARG and CAN than RAP and TUR. Daily CH4 production was greater (P < 0.01) in ARG than all other diets (68.9 vs. 11.2 mg/d). Methane, whether expressed as g per g of OM, NDF, digestible OM, or digestible NDF fed was greatest (P < 0.01) in ARG but similar (P > 0.18) among brassica diets. A significant negative correlation was observed between total GLS and CH4 production. However, when multiple regression analysis on CH4 production was completed, neither total GLS nor individual GLS were a significant component of the model. Addition of brassicas provided similar nutrient digestibility to ARG while reducing daily CH4 production, potentially making brassicas an alternative for ARG in pasture-based ruminant diets.


Subject(s)
Animal Feed/analysis , Dietary Fiber/administration & dosage , Methane/metabolism , Nitrogen/metabolism , Animals , Bioreactors/veterinary , Brassica napus , Brassica rapa , Cattle/metabolism , Dactylis , Diet/veterinary , Dietary Supplements , Digestion , Female , Fermentation , Lolium , Random Allocation , Rumen/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...