Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Med Chem Lett ; 12(8): 1245-1252, 2021 Aug 12.
Article in English | MEDLINE | ID: mdl-34422225

ABSTRACT

Androgen receptor (AR) transcriptional reactivation plays a key role in the development and progression of lethal castration-resistant prostate cancer (CRPC). Recurrent alterations in the AR enable persistent AR pathway signaling and drive resistance to the treatment of second-generation antiandrogens. AR F877L, a point mutation in the ligand binding domain of the AR, was identified in patients who acquired resistance to enzalutamide or apalutamide. In parallel to our previous structure-activity relationship (SAR) studies of compound 4 (JNJ-pan-AR) and clinical stage compound 5 (JNJ-63576253), we discovered additional AR antagonists that provide opportunities for future development. Here we report a highly potent series of spirocyclic thiohydantoins as AR antagonists for the treatment of the F877L mutant and wild-type CRPC.

2.
Bioorg Med Chem Lett ; 28(12): 2159-2164, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29779975

ABSTRACT

We designed and synthesized a new series of fatty acid synthase (FASN) inhibitors with potential utility for the treatment of cancer. Extensive SAR studies led to highly active FASN inhibitors with good cellular activity and oral bioavailability, exemplified by compound 34. Compound 34 is a potent inhibitor of human FASN (IC50 = 28 nM) that effectively inhibits proliferation of A2780 ovarian cells (IC50 = 13 nM) in lipid-reduced serum (LRS). This cellular activity can be rescued by addition of palmitate, consistent with an on-target effect. Compound 34 is also active in many other cell types, including PC3M (IC50 = 25 nM) and LnCaP-Vancouver prostate cells (IC50 = 66 nM), and is highly bioavailable (F 61%) with good exposure after oral administration. In a pharmacodynamics study in H460 lung xenograft-bearing mice, oral treatment with compound 34 results in elevated tumor levels of malonyl-CoA and decreased tumor levels of palmitate, fully consistent with the desired target engagement.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Design , Enzyme Inhibitors/pharmacology , Fatty Acid Synthase, Type I/antagonists & inhibitors , Imidazoles/pharmacology , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemical synthesis , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/chemical synthesis , Fatty Acid Synthase, Type I/metabolism , Humans , Imidazoles/administration & dosage , Imidazoles/chemical synthesis , Mice , Models, Molecular , Molecular Structure , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Structure-Activity Relationship
3.
Chemistry ; 13(32): 9115-26, 2007.
Article in English | MEDLINE | ID: mdl-17705201

ABSTRACT

Chromium alkoxy alkynyl Fischer carbene complexes react with symmetrical internal alkynes to form new and different organometallic species, which result from consecutive insertions of several alkyne units and carbonyl groups into the metal-carbon bond. The insertion sequence can be controlled and, by slight modification of the reaction conditions, it can be directed to the preparation of either seven- or five-component adducts. Three molecules of alkyne, two carbonyl groups, the carbene ligand and the chromium metal moiety partake in the creation of seven new carbon-carbon bonds and two five-membered carbocycles in the first case while four new carbon-carbon bonds, a sigma Cr--C(sp(2)) bond and a cyclopentadienyl moiety are built in the second case. Evidence that five-component chromium complexes are intermediates in the formation of seven-component adducts is provided; they are also able to insert a unit of a different internal alkyne which confers more diversity to the seven-component adducts. The presence of the sigma Cr--C(sp(2)) bond has also been exploited to develop the synthesis of both cyclopentene-fused and novel spiro-cyclopentenones as well as symmetrical biscyclopentenones. Finally, the isolation of six-component adducts, when tolane was employed as the initial alkyne, provides further support to the proposed mechanism.


Subject(s)
Alkynes/chemistry , Carbon/chemistry , Chromium/chemistry , Methane/analogs & derivatives , Organometallic Compounds/chemical synthesis , Crystallography, X-Ray , Hydrocarbons/chemistry , Methane/chemistry , Models, Molecular , Molecular Structure , Organometallic Compounds/chemistry
4.
Chemistry ; 9(1): 88-95, 2003 Jan 03.
Article in English | MEDLINE | ID: mdl-12506367

ABSTRACT

Iodinations of the ortho, meta, and para fluorous arenes (R(f8)CH(2)CH(2)CH(2))(2)C(6)H(4) (R(f8)=(CF(2))(7)CF(3)) with I(2)/H(5)IO(6) in AcOH/H(2)SO(4)/H(2)O give 3,4-(R(f8)CH(2)CH(2)CH(2))(2)C(6)H(3)I (5) and the analogous 2,4- (6) and 2,5- (7) isomers, respectively. Spectroscopic yields are >90 %, but 5 and 7 must be separated by chromatography from by-products (yields isolated: 70 %, 97 %, 61 %). Reaction of 1,3,5-(R(f8)CH(2)CH(2)CH(2))(3)C(6)H(3) with PhI(OAc)(2)/I(2) gives 2,4,6-(R(f8)CH(2)CH(2)CH(2))(3)C(6)H(2)I (8) on multigram scales in 97 % yield. The CF(3)C(6)F(11)/toluene partition coefficients of 5-8 (24 degrees C: 69.5:30.5 (5), 74.7:25.3 (6), 73.9:26.1 (7), 98.0:2.0 (8)) are lower than those of the precursors, but CF(3)C(6)F(11)/MeOH gives higher values (97.0:3.0 (5), 98.6:1.4 (6), 98.0:2.0 (7), >99.3:<0.3 (8)). Reactions of 5-8 with excess NaBO(3) in AcOH yield the corresponding ArI(OAc)(2) species 9-12 (9, 85 % as a 90:10 9/5 mixture; 10, 97 %; 11, 95 %; 12, 93 % as a 95:5 12/8 mixture). These rapidly oxidize 1,4-hydroquinones in MeOH. Subsequent additions of CF(3)C(6)F(11) give liquid biphase systems. Solvent removal from the CF(3)C(6)F(11) phases gives 5-8 in >99-98 % yields, and solvent removal from the MeOH phases gives the quinone products, normally in >99-95 % yields. The recovered compounds 5-8 are easily reoxidized to 9-12 and used again.

5.
J Org Chem ; 67(20): 6863-70, 2002 Oct 04.
Article in English | MEDLINE | ID: mdl-12353975

ABSTRACT

Reactions of 2,6-dibromo-, 3,5-dibromo-, and 2,4,6-tribromopyridine with IZnCH(2)CH(2)R(f8) (R(f8) = (CF(2))(7)CF(3)) in THF at 65 degrees C in the presence of trans-Cl(2)Pd(PPh(3))(2) (5 mol %) gave the fluorous pyridines 2,6- and 3,5-NC(5)H(3)(CH(2)CH(2)R(f8))(2) (1 and 2; 85%, 31%) and 2,4,6-NC(5)H(2)(CH(2)CH(2)R(f8))(3) (3, 61%). Reaction of 2,6-pyridinedicarboxaldehyde with [Ph(3)PCH(2)CH(2)R(f8)](+)I(-)/K(2)CO(3) (p-dioxane/H(2)O, 95 degrees C) gave 2,6-NC(5)H(3)(CH[double bond]CHCH(2)R(f8))(2) (95%; 70:30 ZZ/ZE), which was treated with H(2) (1 atm, 12 h) and 10% Pd/C to yield 2,6-NC(5)H(3)(CH(2)CH(2)CH(2)R(f8))(2) (5, 95%), a higher homologue of 1. Longer reaction times afforded piperidine cis-2,6-HNC(5)H(8)(CH(2)CH(2)CH(2)R(f8))(2) (6, 98%). The stereochemistry was established by NMR analysis of the N-benzylpiperidine. Pyridines 1-3 and 5 are low-melting white solids with CF(3)C(6)F(11)/toluene partition coefficients (24 degrees C) of 93.8:6.2, 93.9:6.1, >99.7:<0.3, and 90.4:9.6, respectively (6, 93.6:6.4). Reaction of 1 and CF(3)SO(3)H gave a pyridinium salt, and Cl(2)Pd(NCCH(3))(2) (0.5 equiv) yielded trans-Cl(2)Pd(1)(2). The crystal structure of the former, which also exhibited liquid crystalline and ionic liquid phases, was determined.

6.
Org Lett ; 4(12): 1993-6, 2002 Jun 13.
Article in English | MEDLINE | ID: mdl-12049500

ABSTRACT

[reaction: see text] The fluorous Schiff base p-Rf8(CH2)3C6H4C(=N(CH2)3Rf8)(CH2)2Rf8 (Rf8 = n-C8F17) is prepared in six steps from p-iodobenzaldehyde and then cyclopalladated (Pd(OAc)2) to give highly effective catalyst precursors for Heck reactions, conducted under homogeneous conditions (DMF, 80-140 degrees C, turnover numbers >10(6)) in the absence of fluorous solvents. Rate, recycling, and other data suggest that the palladacycles serve as sources of palladium nanoparticles, which are the dominant active catalysts.

SELECTION OF CITATIONS
SEARCH DETAIL
...