Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
PeerJ ; 6: e5730, 2018.
Article in English | MEDLINE | ID: mdl-30345173

ABSTRACT

Dispersal is a critical determinant of animal distribution and population dynamics, and is essential information for management planning. We studied the movement patterns and the influence of habitat and biotic factors on Mediterranean brown trout (Salmo trutta) by mark-recapture methods in three headwater streams of the Ebro Basin (NE Iberian Peninsula). Fish were sampled by electrofishing on five occasions over 18-24 months and movements of over 3,000 individually tagged trout (age 1+ onwards) were recorded. Most of the tagged fish exhibited limited movement and were recaptured within 100 m from the initial capture section. Small seasonal differences in the movement pattern were observed, but in two of the streams, displacement distances increased prior the spawning period in autumn. The frequency distributions of dispersal distances were highly leptokurtic and skewed to the right and fitted well to a two-group exponential model, thus trout populations were composed of mobile and stationary individuals, the latter being the predominant component in the populations (71.1-87.5% of individuals). The mean dispersal distances, for fish captured at least in three sampling events, ranged 20.7-45.4 m for the stationary group and 229.4-540.5 m for the mobile group. Moving brown trout were larger than non-moving individuals and exhibited higher growth rates in two of the streams. Habitat features were not consistently linked to movement rates, but there were some interaction effects between stream and habitat characteristics such as depth, cover and water velocity.

2.
PLoS One ; 12(7): e0181697, 2017.
Article in English | MEDLINE | ID: mdl-28750027

ABSTRACT

The mechanisms that can contribute in the fish movement strategies and the associated behaviour can be complex and related to the physiology, genetic and ecology of each species. In the case of the brown trout (Salmo trutta), in recent research works, individual differences in mobility have been observed in a population living in a high mountain river reach (Pyrenees, NE Spain). The population is mostly sedentary but a small percentage of individuals exhibit a mobile behavior, mainly upstream movements. Metabolomics can reflect changes in the physiological process and can determine different profiles depending on behaviour. Here, a non-targeted metabolomics approach was used to find possible changes in the blood metabolomic profile of S. trutta related to its movement behaviour, using a minimally invasive sampling. Results showed a differentiation in the metabolomic profiles of the trouts and different level concentrations of some metabolites (e.g. cortisol) according to the home range classification (pattern of movements: sedentary or mobile). The change in metabolomic profiles can generally occur during the upstream movement and probably reflects the changes in metabolite profile from the non-mobile season to mobile season. This study reveals the contribution of the metabolomic analyses to better understand the behaviour of organisms.


Subject(s)
Trout/metabolism , Animals , Behavior, Animal , Ecosystem , Female , Male , Metabolic Networks and Pathways , Metabolome , Rivers , Spain , Swimming/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...