Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Drug Metab Dispos ; 49(7): 572-580, 2021 07.
Article in English | MEDLINE | ID: mdl-33941543

ABSTRACT

Givosiran is an N-acetylgalactosamine-conjugated RNA interference therapeutic that targets 5'-aminolevulinate synthase 1 mRNA in the liver and is currently marketed for the treatment of acute hepatic porphyria. Herein, nonclinical pharmacokinetics and absorption, distribution, metabolism, and excretion properties of givosiran were characterized. Givosiran was completely absorbed after subcutaneous administration with relatively short plasma elimination half-life (t1/2; less than 4 hours). Plasma exposure increased approximately dose proportionally with no accumulation after repeat doses. Plasma protein binding was concentration dependent across all species tested and was around 90% at clinically relevant concentration in human. Givosiran predominantly distributed to the liver by asialoglycoprotein receptor-mediated uptake, and the t1/2 in the liver was significantly longer (∼1 week). Givosiran was metabolized by nucleases, not cytochrome P450 (P450) isozymes, across species with no human unique metabolites. Givosiran metabolized to form one primary active metabolite with the loss of one nucleotide from the 3' end of antisense strand, AS(N-1)3' givosiran, which was equipotent to givosiran. Renal and fecal excretion were minor routes of elimination of givosiran as approximately 10% and 16% of the dose was recovered intact in excreta of rats and monkeys, respectively. Givosiran is not a substrate, inhibitor, or inducer of P450 isozymes, and it is not a substrate or inhibitor of uptake and most efflux transporters. Thus, givosiran has a low potential of mediating drug-drug interactions involving P450 isozymes and drug transporters. SIGNIFICANCE STATEMENT: Nonclinical pharmacokinetics and absorption, distribution, metabolism, and excretion (ADME) properties of givosiran were characterized. Givosiran shows similar pharmacokinetics and ADME properties across rats and monkeys in vivo and across human and animal matrices in vitro. Subcutaneous administration results in adequate exposure of givosiran to the target organ (liver). These studies support the interpretation of toxicology studies, help characterize the disposition of givosiran in humans, and support the clinical use of givosiran for the treatment of acute hepatic porphyria.


Subject(s)
Acetylgalactosamine/analogs & derivatives , Pyrrolidines/pharmacokinetics , 5-Aminolevulinate Synthetase/antagonists & inhibitors , Acetylgalactosamine/administration & dosage , Acetylgalactosamine/pharmacokinetics , Animals , Cytochrome P-450 Enzyme System/metabolism , Drug Interactions , Female , Half-Life , Injections, Subcutaneous , Intestinal Elimination , Macaca fascicularis , Male , Models, Animal , Porphobilinogen Synthase/deficiency , Porphyrias, Hepatic/drug therapy , Pyrrolidines/administration & dosage , Rats , Renal Elimination , Tissue Distribution
2.
Bioanalysis ; 11(21): 1927-1939, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31829053

ABSTRACT

Aim: The electrophoretic mobility shift assay (EMSA) was evaluated as an alternative to ultrafiltration (UF) to assess plasma protein binding (PPB) of small interfering RNAs (siRNA) and antisense oligonucleotides (ASO). Results & methodology: EMSA analysis showed that PPB depended on siRNA and plasma concentration. Conversely, when analyzed by ultrafiltration, siRNA bound the filtration device nonspecifically and PPB remained >98% across physiologically relevant siRNA concentrations. Using EMSA, siRNA exhibited charge-based interactions with plasma proteins, while ASO remained highly bound to plasma proteins or albumin in the presence of 500 mM salt. Conclusion: PPB characteristics of siRNA and ASO can be distinguished using EMSA. Characterization of siRNA PPB by EMSA enhances our knowledge of siRNA absorption, distribution, metabolism and excretion and advanced development of RNA interference therapeutics.


Subject(s)
Blood Proteins/metabolism , Electrophoretic Mobility Shift Assay/methods , RNA, Small Interfering/metabolism , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...