Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-26734075

ABSTRACT

BACKGROUND: To compare the effects of nateglinide and rosiglitazone on inflammatory markers, GLP-1 levels and metabolic profile in patients with type 2 diabetes (DM2). METHODS: A prospective study was performed in 20 patients with DM2, mean age 51.82 ± 8.05 years, previously treated with dietary intervention. Participants were randomized into rosiglitazone (4-8 mg/day) or nateglinide (120 mg 3 times a day) therapy. After 4 months, the patients were crossed-over with 8 weeks washout period to the alternative treatment for an additional 4-month period on similar dosage schedule. The following variables were assessed before and after 4 months of each treatment period: (1) a test with a standardized 500 calories meal for 5 h including frequent measurements of glucose, insulin, glucagon, proinsulin, GLP-1, free fat acids (FFA), and triglycerides levels was obtained. The lipid profile and HbA1 levels were measured at fasting. (2) Haemostatic and inflammatory markers: platelet aggregation, fibrinogen, PAI-1 activity, C reactive protein (CRP), IL-6, TNF-α, leptin, sICAM and TGFß levels. RESULTS: Both therapy decreased blood glucose levels under the postprandial curve but neither affected glucagon and GLP-1 levels. Nateglinide was associated with higher insulin and pro-insulin secretion, but similar pro-insulin/insulin ratio when compared with rosiglitazone. Only rosiglitazone decreased Homa ß, PAI-1 activity, CRP, fibrinogen, TGFß, FFA and triglyceride levels. CONCLUSIONS: Nateglinide and rosiglitazone were effective in improving glucose and lipid profile and ß cell function, but rosiglitazone afforded a better anti-inflammatory effect. No drug restored alpha cell sensitivity or changed GLP-1 levels. Maintenance of haemostatic factors, inflammatory factors and glucagon levels can be related to the continuously worsening of cardiovascular function and glucose control observed in DM2.

2.
Clinics (Sao Paulo) ; 67(7): 711-7, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22892913

ABSTRACT

OBJECTIVE: To compare the effects of glimepiride and metformin on vascular reactivity, hemostatic factors and glucose and lipid profiles in patients with type 2 diabetes. METHODS: A prospective study was performed in 16 uncontrolled patients with diabetes previously treated with dietary intervention. The participants were randomized into metformin or glimepiride therapy groups. After four months, the patients were crossed over with no washout period to the alternative treatment for an additional four-month period on similar dosage schedules. The following variables were assessed before and after four months of each treatment: 1) fasting glycemia, insulin, catecholamines, lipid profiles and HbA1 levels; 2) t-PA and PAI-1 (antigen and activity), platelet aggregation and fibrinogen and plasminogen levels; and 3) the flow indices of the carotid and brachial arteries. In addition, at the end of each period, a 12-hour metabolic profile was obtained after fasting and every 2 hours thereafter. RESULTS: Both therapies resulted in similar decreases in fasting glucose, triglyceride and norepinephrine levels, and they increased the fibrinolytic factor plasminogen but decreased t-PA activity. Metformin caused lower insulin and pro-insulin levels and higher glucagon levels and increased systolic carotid diameter and blood flow. Neither metformin nor glimepiride affected endothelial-dependent or endothelial-independent vasodilation of the brachial artery. CONCLUSIONS: Glimepiride and metformin were effective in improving glucose and lipid profiles and norepinephrine levels. Metformin afforded more protection against macrovascular diabetes complications, increased systolic carotid artery diameter and total and systolic blood flow, and decreased insulin levels. As both therapies increased plasminogen levels but reduced t-PA activity, a coagulation process was likely still ongoing.


Subject(s)
Carotid Arteries/drug effects , Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/pharmacology , Metformin/pharmacology , Sulfonylurea Compounds/pharmacology , Blood Glucose/metabolism , Carotid Arteries/pathology , Diabetes Mellitus, Type 2/blood , Fasting/blood , Female , Humans , Hypoglycemic Agents/therapeutic use , Lipids/blood , Male , Middle Aged , Organ Size/drug effects , Prospective Studies
3.
Clinics ; 67(7): 711-717, July 2012. graf, tab
Article in English | LILACS | ID: lil-645441

ABSTRACT

OBJECTIVE: To compare the effects of glimepiride and metformin on vascular reactivity, hemostatic factors and glucose and lipid profiles in patients with type 2 diabetes. METHODS: A prospective study was performed in 16 uncontrolled patients with diabetes previously treated with dietary intervention. The participants were randomized into metformin or glimepiride therapy groups. After four months, the patients were crossed over with no washout period to the alternative treatment for an additional four-month period on similar dosage schedules. The following variables were assessed before and after four months of each treatment: 1) fasting glycemia, insulin, catecholamines, lipid profiles and HbA1 levels; 2) t-PA and PAI-1 (antigen and activity), platelet aggregation and fibrinogen and plasminogen levels; and 3) the flow indices of the carotid and brachial arteries. In addition, at the end of each period, a 12-hour metabolic profile was obtained after fasting and every 2 hours thereafter. RESULTS: Both therapies resulted in similar decreases in fasting glucose, triglyceride and norepinephrine levels, and they increased the fibrinolytic factor plasminogen but decreased t-PA activity. Metformin caused lower insulin and pro-insulin levels and higher glucagon levels and increased systolic carotid diameter and blood flow. Neither metformin nor glimepiride affected endothelial-dependent or endothelial-independent vasodilation of the brachial artery. CONCLUSIONS: Glimepiride and metformin were effective in improving glucose and lipid profiles and norepinephrine levels. Metformin afforded more protection against macrovascular diabetes complications, increased systolic carotid artery diameter and total and systolic blood flow, and decreased insulin levels. As both therapies increased plasminogen levels but reduced t-PA activity, a coagulation process was likely still ongoing.


Subject(s)
Female , Humans , Male , Middle Aged , Carotid Arteries/drug effects , /drug therapy , Hypoglycemic Agents/pharmacology , Metformin/pharmacology , Sulfonylurea Compounds/pharmacology , Blood Glucose/metabolism , Carotid Arteries/pathology , /blood , Fasting/blood , Hypoglycemic Agents/therapeutic use , Lipids/blood , Organ Size/drug effects , Prospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...