Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
2.
Front Pharmacol ; 14: 1143923, 2023.
Article in English | MEDLINE | ID: mdl-37144218

ABSTRACT

Introduction: Diabetes mellitus describes a metabolic disorder of multiple etiologies, characterized by chronic hyperglycemia, which induces a series of molecular events capable of leading to microvascular damage, affecting the blood vessels of the retina, causing diabetic retinopathy. Studies indicate that oxidative stress plays a central role in complications involving diabetes. Açaí (Euterpe oleracea) has attracted much attention given its antioxidant capacity and potential associated health benefits in preventing oxidative stress, one of the causes of diabetic retinopathy. The objective of this work was to evaluate the possible protective effect of açaí (E. oleracea) on the retinal function of mice with induced diabetes, based on full field electroretinogram (ffERG). Methods: We opted for mouse models with induced diabetes by administration of a 2% alloxan aqueous solution and treatment with feed enriched with açaí pulp. The animals were divided into 4 groups: CTR (received commercial ration), DM (received commercial ration), DM + açaí (E. oleracea-enriched ration) and CTR + açaí (E. oleracea-enriched ration). The ffERG was recorded three times, 30, 45 and 60 days after diabetes induction, under scotopic and photopic conditions to access rod, mixed and cone responses, in addition to monitoring the weight and blood glucose of the animals during the study period. Statistical analysis was performed using the two-way ANOVA test with Tukey's post-test. Results: Our work obtained satisfactory results with the ffERG responses in diabetic animals treated with açaí, where it was observed that there was no significant decrease in the b wave ffERG amplitude of this group over time when compared to the results of the Diabetic group not treated with açaí, which showed a significant reduction of this ffERG component. Discussion: The results of the present study show, for the first time, that treatment with an açaí-enriched diet is effective against the decrease in the amplitude of visual electrophysiological responses in animals with induced diabetes, which opens a new horizon for the prevention of retinal damage in diabetic individuals from treatment with açaí base. However, it is worth mentioning that our findings consist of a preliminary study and further researches and clinical trials are needed to examine açaí potential as an alternative therapy for diabetic retinopathy.

3.
PLoS One ; 15(10): e0239719, 2020.
Article in English | MEDLINE | ID: mdl-33002017

ABSTRACT

In the present study, we investigated the topographical distribution of ganglion cells and displaced amacrine cells in the retina of the collared peccary (Pecari tajacu), a diurnal neotropical mammal of the suborder Suina (Order Artiodactyla) widely distributed across central and mainly South America. Retinas were prepared and processed following the Nissl staining method. The number and distribution of retinal ganglion cells and displaced amacrine cells were determined in six flat-mounted retinas from three animals. The average density of ganglion cells was 351.822 ± 31.434 GC/mm2. The peccary shows a well-developed visual streak. The average peak density was 6,767 GC/mm2 and located within the visual range and displaced temporally as an area temporalis. Displaced amacrine cells have an average density of 300 DAC/mm2, but the density was not homogeneous along the retina, closer to the center of the retina the number of cells decreases and when approaching the periphery the density increases, in addition, amacrine cells do not form retinal specialization like ganglion cells. Outside the area temporalis, amacrine cells reach up to 80% in the ganglion cell layer. However, in the region of the area temporalis, the proportion of amacrine cells drops to 32%. Thus, three retinal specializations were found in peccary's retina by ganglion cells: visual streak, area temporalis and dorsotemporal extension. The topography of the ganglion cells layer in the retina of the peccary resembles other species of Order Artiodactyla already described and is directly related to its evolutionary history and ecology of the species.


Subject(s)
Amacrine Cells/ultrastructure , Artiodactyla/anatomy & histology , Retina/anatomy & histology , Retinal Ganglion Cells/ultrastructure , Animals , Cell Count , Male
4.
Nutr Neurosci ; 20(5): 265-272, 2017 Jun.
Article in English | MEDLINE | ID: mdl-26863909

ABSTRACT

BACKGROUND: The protective effect of a diet supplemented by the Amazonian fruit Euterpe oleracea (EO) against methylmercury (MeHg) toxicity in rat retina was studied using electroretinography (ERG) and biochemical evaluation of oxidative stress. METHOD: Wistar rats were submitted to conventional diet or EO-enriched diet for 28 days. After that, each group received saline solution or 5 mg/kg/day of MeHg for 7 days. Full-field single flash, flash and flicker ERGs were evaluated in the following groups: control, EO, MeHg, and EO+MeHg. The amplitudes of the a-wave, b-wave, photopic negative response from rod and/or cone were measured by ERGs as well as the amplitudes and phases of the fundamental component of the sine-wave flicker ERG. Lipid peroxidation was determined by thiobarbituric acid reactive species. RESULTS: All ERG components had decreased amplitudes in the MeHg group when compared with controls. EO-enriched food had no effect on the non-intoxicated animals. The intoxicated animals and those that received the supplemented diet presented significant amplitude reductions of the cone b-wave and of the fundamental flicker component when compared with non-intoxicated control. The protective effect of the diet on scotopic conditions was only observed for bright flashes eliciting a mixed rod and cone response. There was a significant increase of lipid peroxidation in the retina from animals exposed to MeHg and EO-supplemented diet was able to prevent MeHg-induced oxidative stress in retinal tissue. CONCLUSION: These findings open up perspectives for the use of diets supplemented with EO as a protective strategy against visual damage induced by MeHg.


Subject(s)
Euterpe , Fruit , Methylmercury Compounds/toxicity , Oxidative Stress/drug effects , Retina/physiopathology , Retinal Diseases/prevention & control , Animals , Diet , Electrophysiological Phenomena , Electroretinography , Lipid Peroxidation , Male , Rats , Rats, Wistar , Retina/drug effects , Retinal Diseases/chemically induced , Retinal Diseases/physiopathology
5.
PLoS One ; 11(1): e0147318, 2016.
Article in English | MEDLINE | ID: mdl-26800521

ABSTRACT

A new method is presented to determine the retinal spectral sensitivity function S(λ) using the electroretinogram (ERG). S(λ)s were assessed in three different species of myomorph rodents, Gerbils (Meriones unguiculatus), Wistar rats (Ratus norvegicus), and mice (Mus musculus). The method, called AC Constant Method, is based on a computerized automatic feedback system that adjusts light intensity to maintain a constant-response amplitude to a flickering stimulus throughout the spectrum, as it is scanned from 300 to 700 nm, and back. The results are presented as the reciprocal of the intensity at each wavelength required to maintain a constant peak to peak response amplitude. The resulting S(λ) had two peaks in all three rodent species, corresponding to ultraviolet and M cones, respectively: 359 nm and 511 nm for mice, 362 nm and 493 nm for gerbils, and 362 nm and 502 nm for rats. Results for mouse and gerbil were similar to literature reports of S(λ) functions obtained with other methods, confirming that the ERG associated to the AC Constant-Response Method was effective to obtain reliable S(λ) functions. In addition, due to its fast data collection time, the AC Constant Response Method has the advantage of keeping the eye in a constant light adapted state.


Subject(s)
Electroretinography/methods , Animals , Gerbillinae , Mice , Rats , Rats, Wistar , Software
6.
Nitric Oxide ; 36: 44-50, 2014 Jan 30.
Article in English | MEDLINE | ID: mdl-24275015

ABSTRACT

Nitric oxide (NO) is a highly reactive gas with considerable diffusion power that is produced pre- and post synaptically in the central nervous system (CNS). In the visual system, it is involved in the processing of the visual information from the retina to superior visual centers. In this review we discuss the main mechanisms through which nitric oxide acts, in physiological levels, on the retina, lateral geniculate nucleus (LGN) and primary visual cortex. In the retina, the cGMP-dependent nitric oxide activity initially amplifies the signal, subsequently increasing the inhibitory activity, suggesting that the signal is "filtered". In the thalamus, on dLGN, neuronal activity is amplified by NO derived from brainstem cholinergic cells, in a cGMP-independent mechanism; the result is the amplification of the signal arriving from retina. Finally, on the visual cortex (V1), NO acts through changes on the cGMP levels, increasing signal detection. These observations suggest that NO works like a filter, modulating the signal along the visual pathways.


Subject(s)
Nitric Oxide/metabolism , Retina/physiology , Retinal Ganglion Cells/metabolism , Vision, Ocular/physiology , Visual Cortex/metabolism , Animals , Cyclic GMP/metabolism , Gene Expression Regulation , Geniculate Bodies/metabolism , Glutamine/metabolism , Humans , N-Methylaspartate/metabolism , Neurons/metabolism , Retina/metabolism , Signal Transduction , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/metabolism
7.
Vis Neurosci ; 26(2): 167-75, 2009.
Article in English | MEDLINE | ID: mdl-19250601

ABSTRACT

The presence, density distribution, and mosaic regularity of cone types were studied in the retina of the diurnal agouti, Dasyprocta aguti. Longwave-sensitive (L-) and shortwave-sensitive (S-) cones were detected by antibodies against the respective cone opsins. L- and S-cones were found to represent around 90 and 10% of the cone population, respectively. There was no evidence for L- and S-opsin coexpression in agouti cones. L-cone densities were highest, up to 14,000/mm2, along a horizontal visual streak located about 2-3 mm dorsal to the optic nerve, and the L-cone distribution showed a dorsoventral asymmetry with higher densities in ventral (about 10,000/mm2) than in dorsal (about 4000/mm2) retinal regions. This L-cone topography parallels the agouti's ganglion cell topography. S-cones had a peak density of 1500-2000/mm2 in the central retinal region but did not form a visual streak. Their distribution also showed a dorsoventral asymmetry with densities around 600/mm2 in dorsal and around 1000/mm2 in ventral retinal regions. The patterning of cone arrays was assessed by the density recovery profile analysis. At all eccentricities evaluated, the S-cone mosaic less efficiently packed than the L-cone mosaic. Rod densities ranged from 47,000/mm2 in peripheral to 64,000/mm2 in central retina, and rod:cone ratios were 4:1-9:1. The comparatively low rod density and high cone proportion appear well adapted to the diurnal lifestyle of the agouti.


Subject(s)
Retinal Cone Photoreceptor Cells/cytology , Animals , Cell Count , Color Vision , Cone Opsins/biosynthesis , Cone Opsins/ultrastructure , Immunohistochemistry , Retinal Cone Photoreceptor Cells/metabolism , Retinal Ganglion Cells/cytology , Retinal Rod Photoreceptor Cells/cytology , Retinal Rod Photoreceptor Cells/metabolism , Rod Opsins/biosynthesis , Rod Opsins/ultrastructure , Rodentia
8.
Neuroinformatics ; 5(1): 59-78, 2007.
Article in English | MEDLINE | ID: mdl-17426353

ABSTRACT

Although neuronal dynamics is to a high extent a function of synapse strength, the spatial distribution of neurons is also known to play an important role, which is evidenced by the topographical organization of the main stations of the visual system: retina, lateral geniculate nucleus, and cortex. The coexisting systems of normally placed and displaced amacrine cells in the vertebrate retina provide interesting examples of retinotopic spatial organization. However, it is not clear whether these two systems are spatially interrelated or not. The current work applies two mathematical-computational methods-a new method involving Voronoi diagrams for local density quantification and a more traditional approach, the Ripley K function-in order to characterize the mosaics of normally placed and displaced amacrine cells in the retina of Hoplias malabaricus and search for possible spatial relationships between these two types of mosaics. The results obtained by the Voronoi local density analysis suggest that the two systems of amacrine cells are spatially interrelated through nearly constant local density ratios.


Subject(s)
Amacrine Cells/cytology , Cell Communication/physiology , Mathematical Computing , Retina/cytology , Software , Synapses/physiology , Animals , Fishes , Visual Pathways/anatomy & histology , Visual Pathways/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...