Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 31(31): 43927-43940, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38913262

ABSTRACT

The caterpillar Anticarsia gemmatalis (Lepidoptera: Noctuidae) is a prevalent pest in soybean plantations, managed using both natural and synthetic chemical products. However, the emergence of resistance in some populations emphasizes the need to explore alternative insecticides. Flupyradifurone, a neurotoxic insecticide, has not been previously used for controlling A. gemmatalis. This study evaluated the potential of flupyradifurone in the management of A. gemmatalis. Initially, the toxicity and anti-feeding effects, as well as histopathological and cytotoxic impacts, of flupyradifurone on A. gemmatalis were evaluated. Subsequently, the indirect effects of flupyradifurone on the midgut and fat body of the predator Podisus nigrispinus (Hemiptera: Pentatomidae) were verified. The results indicate the susceptibility of caterpillars to flupyradifurone, with an LC50 of 5.10 g L-1. Furthermore, the insecticide adversely affects survival, induces an anti-feeding response, and inflicts damage on the midgut of the caterpillars. However, flupyradifurone also leads to side effects in the predator P. nigrispinus through indirect intoxication of the caterpillars, including midgut and fat body damage. While flupyradifurone demonstrates toxicity to A. gemmatalis, suggesting its potential for the chemical control of this pest, the indirect negative effects on the predator indicate the need for its controlled use in integrated pest management programs with the insecticide and the predator.


Subject(s)
Insecticides , Animals , Insecticides/toxicity , Larva/drug effects , 4-Butyrolactone/analogs & derivatives , 4-Butyrolactone/toxicity , Heteroptera/drug effects , Moths/drug effects , Lepidoptera/drug effects , Pyridines
2.
Protein Pept Lett ; 24(11): 1040-1047, 2017.
Article in English | MEDLINE | ID: mdl-28925864

ABSTRACT

BACKGROUND: Enzyme kinetics contributes to understanding the structure and function of insect digestive serine proteases. Kinetic parameters allow to understanding active sites and mechanisms of enzymes efficacy, identifying the inhibition of the insects digestive protease system by inhibitors produced by plants, or via the application of synthetic inhibitors Objectives: The aim of this study was to purify digestive serine proteases of A. gemmatalis, determining their kinetic properties using the chromogenic substrates tripeptidyl and characterizing the effects of synthetic inhibitors on their activity. In order to provide new opportunities for sustainable pest management through the development of protease inhibitors. METHODS: The enzymes were purified on p-aminobenzamidine agarose affinity column in an FPLC system using electrophoresis with 12.5% polyacrylamide gel. Michaelis-Menten constants and the inhibition model were determined according to the Dixon methodology and Lineweaver-Burk's double reciprocal. RESULTS: The KM values and catalytic constants of peptide substrates show that A. gemmatalis trypsin- like has a higher affinity for substrates with arginine in the P1 position. Inhibition by Gor 3, Gor 4, and Gor 5, in the presence of L-BApNA, was linear competitive. The inhibition constant for the Gor 5 peptide was higher due to its strong interaction with hydrophobic residues in the secondary site region of A. gemmatalis trypsin-like. CONCLUSION: It is observed that among the three peptides analyzed, the Gor 5 presented lower inhibition constant and therefore, the most potent among the tested ones. The predominance of hydrophobic residues in the region of the secondary site of the enzymes favored the interaction of the peptide. After characterization by three different types of graphs profiles, it is possible to verify that the inhibition model of the trypsin-like enzymes for the tested peptides is of the linear competitive type, in the concentration range of inhibitors and substrates analyzed. However, by the graphing profiles it is observed that the inhibition occurred due to the interaction of the peptides at the secondary site S2' in the hydrophobic cavity of the enzymes analyzed.


Subject(s)
Oligopeptides/chemistry , Serine Proteases/chemistry , Serine Proteinase Inhibitors/chemistry , Amino Acid Sequence , Animals , Arginine/chemistry , Catalytic Domain , Chromatography, Affinity/methods , Hydrophobic and Hydrophilic Interactions , Kinetics , Moths , Protein Binding , Protein Conformation , Thermodynamics , Trypsin/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL