Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Microbiol ; 202(2): 309-322, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31659382

ABSTRACT

In northern Mexico, aridity, salinity and high temperatures limit areas that can be cultivated. To investigate the nature of nitrogen-fixing symbionts of Phaseolus filiformis, an adapted wild bean species native to this region, their phylogenies were inferred by MLSA. Most rhizobia recovered belong to the proposed new species Ensifer aridi. Phylogenetic analyses of nodC and nifH show that Mexican isolates carry symbiotic genes acquired through horizontal gene transfer that are divergent from those previously characterized among bean symbionts. These strains are salt tolerant, able to grow in alkaline conditions, high temperatures, and capable of utilizing a wide range of carbohydrates and organic acids as carbon sources for growth. This study improves the knowledge on diversity, geographic distribution and evolution of bean-nodulating rhizobia in Mexico and further enlarges the spectrum of microsymbiont with which Phaseolus species can interact with, including cultivated bean varieties, notably under stressed environments. Here, the species Ensifer aridi sp. nov. is proposed as strain type of the Moroccan isolate LMR001T (= LMG 31426T; = HAMBI 3707T) recovered from desert sand dune.


Subject(s)
Phaseolus/metabolism , Rhizobiaceae/classification , Rhizobiaceae/isolation & purification , Root Nodules, Plant/microbiology , DNA, Bacterial/genetics , Hot Temperature , Mexico , Phaseolus/growth & development , Phylogeny , RNA, Ribosomal, 16S/genetics , Rhizobiaceae/genetics , Salt Tolerance/genetics , Sand , Sequence Analysis, DNA , Symbiosis
2.
BMC Genomics ; 18(1): 85, 2017 01 14.
Article in English | MEDLINE | ID: mdl-28088165

ABSTRACT

BACKGROUND: Nitrogen fixing bacteria isolated from hot arid areas in Asia, Africa and America but from diverse leguminous plants have been recently identified as belonging to a possible new species of Ensifer (Sinorhizobium). In this study, 6 strains belonging to this new clade were compared with Ensifer species at the genome-wide level. Their capacities to utilize various carbon sources and to establish a symbiotic interaction with several leguminous plants were examined. RESULTS: Draft genomes of selected strains isolated from Morocco (Merzouga desert), Mexico (Baja California) as well as from India (Thar desert) were produced. Genome based species delineation tools demonstrated that they belong to a new species of Ensifer. Comparison of its core genome with those of E. meliloti, E. medicae and E. fredii enabled the identification of a species conserved gene set. Predicted functions of associated proteins and pathway reconstruction revealed notably the presence of transport systems for octopine/nopaline and inositol phosphates. Phenotypic characterization of this new desert rhizobium species showed that it was capable to utilize malonate, to grow at 48 °C or under high pH while NaCl tolerance levels were comparable to other Ensifer species. Analysis of accessory genomes and plasmid profiling demonstrated the presence of large plasmids that varied in size from strain to strain. As symbiotic functions were found in the accessory genomes, the differences in symbiotic interactions between strains may be well related to the difference in plasmid content that could explain the different legumes with which they can develop the symbiosis. CONCLUSIONS: The genomic analysis performed here confirms that the selected rhizobial strains isolated from desert regions in three continents belong to a new species. As until now only recovered from such harsh environment, we propose to name it Ensifer aridi. The presented genomic data offers a good basis to explore adaptations and functionalities that enable them to adapt to alkalinity, low water potential, salt and high temperature stresses. Finally, given the original phylogeographic distribution and the different hosts with which it can develop a beneficial symbiotic interaction, Ensifer aridi may provide new biotechnological opportunities for degraded land restoration initiatives in the future.


Subject(s)
Genome, Plant , Genomics , Nitrogen Fixation/genetics , Rhizobium/genetics , Rhizobium/metabolism , Africa , Americas , Asia , Computational Biology/methods , Desert Climate , Evolution, Molecular , Genomics/methods , High-Throughput Nucleotide Sequencing , Molecular Sequence Annotation , Phenotype , Phylogeny , Rhizobium/classification , Symbiosis/genetics , Synteny
SELECTION OF CITATIONS
SEARCH DETAIL
...