Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
2.
Gastroenterology ; 127(4): 1085-95, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15480987

ABSTRACT

BACKGROUND & AIMS: Cystic fibrosis (CF) is caused by over 1000 mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene and presents with a widely variable phenotype. Genotype-phenotype studies identified CFTR mutations that were associated with pancreatic sufficiency (PS). Residual Cl- channel function was shown for selected PS mutations in heterologous cells. However, the functional consequences of most CFTR mutations in native epithelia are not well established. METHODS: To elucidate the relationships between epithelial CFTR function, CFTR genotype, and patient phenotype, we measured cyclic adenosine monophosphate (cAMP)-mediated Cl- secretion in rectal biopsy specimens from 45 CF patients who had at least 1 non-DeltaF508 mutation carrying a wide spectrum of CFTR mutations. We compared CFTR genotypes and clinical manifestations of CF patients who expressed residual CFTR-mediated Cl- secretion with patients in whom Cl- secretion was absent. RESULTS: Residual anion secretion was detected in 40% of CF patients, and was associated with later disease onset (P < 0.0001), higher frequency of PS (P < 0.0001), and less severe lung disease (P < 0.05). Clinical outcomes correlated with the magnitude of residual CFTR activity, which was in the range of approximately 12%-54% of controls. CONCLUSIONS: Specific CFTR mutations confer residual CFTR function to rectal epithelia, which is related closely to a mild disease phenotype. Quantification of rectal CFTR-mediated Cl- secretion may be a sensitive test to predict the prognosis of CF disease and identify CF patients who would benefit from therapeutic strategies that would increase residual CFTR activity.


Subject(s)
Colon/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/physiology , Cystic Fibrosis/metabolism , Adolescent , Adult , Aged , Child , Child, Preschool , Chlorides/metabolism , Cyclic AMP/physiology , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Genotype , Humans , Infant , Infant, Newborn , Middle Aged , Mutation , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...