Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Life (Basel) ; 13(4)2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37109592

ABSTRACT

The interactions between cell and cellular matrix confers plasticity to each body tissue, influencing the cellular migratory capacity. Macrophages rely on motility to promote their physiological function. These phagocytes are determinant for the control of invasive infections, and their immunological role largely depends on their ability to migrate and adhere to tissue. Therefore, they interact with the components of the extracellular matrix through their adhesion receptors, conferring morphological modifications that change their shape during migration. Nevertheless, the need to use in vitro cell growth models with the conditioning of three-dimensional synthetic matrices to mimic the dynamics of cell-matrix interaction has been increasingly studied. This becomes more important to effectively understand the changes occurring in phagocyte morphology in the context of infection progression, such as in Chagas disease. This disease is caused by the intracellular pathogen Trypanosoma cruzi, capable of infecting macrophages, determinant cells in the anti-trypanosomatid immunity. In the present study, we sought to understand how an in vitro extracellular matrix model interferes with T. cruzi infection in macrophages. Using different time intervals and parasite ratios, we evaluated the cell morphology and parasite replication rate in the presence of 3D collagen I matrix. Nevertheless, microscopy techniques such as scanning electron microscopy were crucial to trace macrophage-matrix interactions. In the present work, we demonstrated for the first time that the macrophage-matrix interaction favors T. cruzi in vitro replication and the release of anti-inflammatory cytokines during macrophage infection, in addition to drastically altering the morphology of the macrophages and promoting the formation of migratory macrophages.

2.
Front Med (Lausanne) ; 6: 129, 2019.
Article in English | MEDLINE | ID: mdl-31275938

ABSTRACT

Cryptococcosis is a systemic fungal infection caused by Cryptococcus neoformans. In immunocompetent patients, cryptococcal infection is often confined to the lungs. In immunocompromised individuals, C. neoformans may cause life-threatening illness, either from novel exposure or through reactivation of a previously acquired latent infection. For example, cryptococcal meningitis is a severe clinical disease that can manifest in people that are immunocompromised due to AIDS. The major constituents of the Cryptococcus polysaccharide capsule, glucuronoxylomannan (GXM), and galactoxylomannan (GalXM), also known as glucuronoxylomanogalactan (GXMGal), are considered the primary virulence factors of Cryptococcus. Despite the predominance of GXM in the polysaccharide capsule, GalXM has more robust immunomodulatory effects on host cellular immunity. This review summarizes current knowledge regarding host-Crytococcus neoformans interactions and the role of capsular polysaccharides in host immunomodulation. Future studies will likely facilitate a better understanding of the mechanisms involved in antigenic recognition and host immune response to C. neoformans and lead to the development of new therapeutic pathways for cryptococcal infection.

3.
Sci Rep ; 8(1): 16378, 2018 11 06.
Article in English | MEDLINE | ID: mdl-30401972

ABSTRACT

Cryptococcus neoformans is an opportunistic fungus that can cause lethal brain infections in immunosuppressed individuals. Infection usually occurs via the inhalation of a spore or desiccated yeast which can then disseminate from the lung to the brain and other tissues. Dissemination and disease is largely influence by the production of copious amounts of cryptococcal polysaccharides, both which are secreted to the extracellular environment or assembled into a thick capsule surrounding the cell body. There are two important polysaccharides: glucuronoxylomannan (GXM) and galactoxylomannan, also called as glucuronoxylomanogalactan (GXMGal or GalXM). Although GXM is more abundant, GalXM has a more potent modulatory effect. In the present study, we show that GalXM is a potent activator of murine dendritic cells, and when co-cultured with T cells, induces a Th17 cytokine response. We also demonstrated that treating mice with GalXM prior to infection with C. neoformans protects from infection, and this phenomenon is dependent on IL-6 and IL-17. These findings help us understand the immune biology of capsular polysaccharides in fungal pathogenesis.


Subject(s)
Cryptococcosis/metabolism , Cryptococcus neoformans/physiology , Fungal Capsules/metabolism , Interleukin-17/metabolism , Polysaccharides/pharmacology , Animals , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/metabolism , Cryptococcosis/immunology , Cryptococcus neoformans/metabolism , Dendritic Cells/cytology , Dendritic Cells/drug effects , Interferon-gamma/biosynthesis , Interleukin-17/biosynthesis , Mice , Th17 Cells/cytology , Th17 Cells/drug effects
4.
PLoS One ; 10(5): e0124888, 2015.
Article in English | MEDLINE | ID: mdl-25933287

ABSTRACT

B-1 cells can be differentiated from B-2 cells because they are predominantly located in the peritoneal and pleural cavities and have distinct phenotypic patterns and activation properties. A mononuclear phagocyte derived from B-1 cells (B-1CDP) has been described. As the B-1CDP cells migrate to inflammatory/infectious sites and exhibit phagocytic capacity, the microbicidal ability of these cells was investigated using the Leishmania major infection model in vitro. The data obtained in this study demonstrate that B-1CDP cells are more susceptible to infection than peritoneal macrophages, since B-1CDP cells have a higher number of intracellular amastigotes forms and consequently release a larger number of promastigotes. Exacerbated infection by L. major required lipid bodies/PGE2 and IL-10 by B-1CDP cells. Both infection and the production of IL-10 were decreased when PGE2 production was blocked by NSAIDs. The involvement of IL-10 in this mechanism was confirmed, since B-1CDP cells from IL-10 KO mice are more competent to control L. major infection than cells from wild type mice. These findings further characterize the B-1CDP cells as an important mononuclear phagocyte that plays a previously unrecognized role in host responses to L. major infection, most likely via PGE2-driven production of IL-10.


Subject(s)
B-Lymphocytes/parasitology , Dinoprostone/metabolism , Interleukin-10/metabolism , Leishmania major/physiology , Leishmaniasis, Cutaneous/parasitology , Phagocytes/parasitology , Animals , Aspirin/pharmacology , B-Lymphocytes/drug effects , B-Lymphocytes/immunology , Disease Susceptibility , Interleukin-10/biosynthesis , Leishmania major/drug effects , Leishmania major/growth & development , Leishmania major/immunology , Leishmaniasis, Cutaneous/immunology , Lipid Droplets/metabolism , Macrophages, Peritoneal/parasitology , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Parasitemia/immunology , Parasitemia/parasitology , Phagocytes/drug effects , Phenotype , Prostaglandin-Endoperoxide Synthases/metabolism
5.
PLoS One ; 9(3): e90582, 2014.
Article in English | MEDLINE | ID: mdl-24599360

ABSTRACT

Neutrophils are involved in the initial steps of most responses to pathogens and are essential components of the innate immune response. Due to the ability to produce and release various soluble mediators, neutrophils may participate in the regulation of the inflammatory response. Little is known about the role of neutrophils during protozoan infections including infection by Trypanosoma cruzi. In the present study we investigated the importance of inflammatory neutrophils on macrophage activation and T. cruzi replication in vitro, in cells obtained from BALB/c mice and C57Bl/6 mice. Co-cultures of BALB/c apoptotic or live neutrophils with infected peritoneal macrophages resulted in increased replication of the parasites and in the production of TGF-ß and PGE2. The treatment with anti-TGF-ß neutralizing antibody and COX inhibitor blocked the parasite replication in vitro. On the other hand, co-cultures of T. cruzi infected macrophages with live neutrophils isolated from C57BL/6 mice resulted in decreased number of trypomastigotes in culture and increased production of TNF-α and NO. The addition of anti-TNF-α neutralizing antibody or elastase inhibitor resulted in the abolishment of macrophage microbicidal effect and increased parasite replication. Addition of elastase to infected macrophages reduced the replication of the parasites, and on the other hand, addition of a selective inhibitor of iNOS increased parasite growth, suggesting the role of NO in this system. Our findings reveal that neutrophils may regulate T. cruzi experimental infection and determine susceptibility and resistance to infection.


Subject(s)
Leukocyte Elastase/physiology , Macrophages, Peritoneal/parasitology , Neutrophils/enzymology , Trypanosoma cruzi/immunology , Animals , Apoptosis , Cells, Cultured , Chagas Disease/immunology , Chagas Disease/parasitology , Coculture Techniques , Cytokines/metabolism , Dinoprostone/physiology , Host Specificity , Host-Parasite Interactions , Mice, Inbred BALB C , Mice, Inbred C57BL , Neutrophils/immunology , Neutrophils/parasitology , Nitric Oxide/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...