Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicon ; 57(5): 764-71, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21333665

ABSTRACT

The effects induced by Apis mellifera venom (AMV), melittin-free AMV, fraction with molecular mass < 10 kDa (F<10) or melittin in nociceptive and inflammatory pain models in mice were investigated. Subcutaneous administration of AMV (2, 4 or 6 mg/kg) or melittin-free AMV (1, 2 or 4 mg/kg) into the dorsum of mice inhibited both phases of formaldehyde-induced nociception. However, F<10 (2, 4 or 6 mg/kg) or melittin (2 or 3 mg/kg) inhibited only the second phase. AMV (4 or 6 mg/kg), but not F<10, melittin-free AMV or melittin, induced antinociception in the hot-plate model. Paw injection of AMV (0.05 or 0.10 mg), F<10 (0.05 or 0.1 mg) or melittin (0.025 or 0.050 mg) induced a nociceptive response. In spite of inducing nociception after paw injection, scorpion (Tityus serrulatus) or snake (Bothrops jararaca) venom injected into the dorsum of mice did not inhibit formaldehyde-induced nociception. In addition, AMV (6 mg/kg), but not F<10 (6 mg/kg) or melittin (3 mg/kg), inhibited formaldehyde paw oedema. Concluding, AMV, F<10 and melittin induce two contrasting effects: nociception and antinociception. AMV antinociception involves the action of different components and does not result from non-specific activation of endogenous antinociceptive mechanisms activated by exposure to noxious stimuli.


Subject(s)
Bee Venoms/toxicity , Inflammation/chemically induced , Melitten/toxicity , Pain/chemically induced , Analysis of Variance , Animals , Formaldehyde/toxicity , Male , Mice , Motor Activity/drug effects , Pain Measurement
2.
Toxicon ; 45(5): 585-93, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15777954

ABSTRACT

In this study we characterized the nociceptive response and edema induced by the venom of the scorpion Tityus serrulatus in rats and mice and carried out a preliminary pharmacological investigation of the mechanisms involved in these responses. Intraplantar injection of the venom (1 or 10mug) induced edema and a marked ipsilateral nociceptive response, characterized by thermal and mechanical allodynia and paw licking behaviour. The nociceptive response was inhibited by previous intraperitoneal administration of indomethacin (4mg/kg), dipyrone (200mg/kg), cyproheptadine (10mg/kg) or morphine (5 or 10mg/kg), but not by dexamethasone (1 or 4mg/kg) or promethazine (1 or 5mg/kg). The edema was inhibited by previous treatment with promethazine (5 or 10mg/kg) or cyproheptadine (5 or 10mg/kg), but not by indomethacin (2 or 4mg/kg), dexamethasone (1 or 4mg/kg) or cromolyn (40 or 80mg/kg). Some bioactive amines, including histamine and 5-hydroxytryptamine, were found in the venom in low concentrations. In conclusion, the nociceptive response and edema induced by the venom of T. serrulatus may result from the action of multiple mediators including eicosanoids, histamine and 5-hydroxytryptamine. These results may lead to a better understanding of the host response to potent animal toxins and also give insights into a more rational pharmacological approach to alleviate the intense pain associated with the scorpion envenomation.


Subject(s)
Edema/chemically induced , Pain Threshold/drug effects , Pain/chemically induced , Scorpion Venoms/antagonists & inhibitors , Scorpion Venoms/toxicity , Scorpions , Analysis of Variance , Animals , Behavior, Animal/drug effects , Cyproheptadine/pharmacology , Dipyrone/pharmacology , Edema/prevention & control , Indomethacin/pharmacology , Injections, Subcutaneous , Male , Mice , Morphine/pharmacology , Pain/prevention & control , Promethazine/pharmacology , Rats , Rats, Wistar , Scorpion Venoms/chemistry , Serotonin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...