Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Res Int ; 2017: 5284816, 2017.
Article in English | MEDLINE | ID: mdl-28607933

ABSTRACT

Biological and engineering studies of Hess-Murray's law are focused on assemblies of tubes with impermeable walls. Blood vessels and airways have permeable walls to allow the exchange of fluid and other dissolved substances with tissues. Should Hess-Murray's law hold for bifurcating systems in which the walls of the vessels are permeable to fluid? This paper investigates the fluid flow in a porous-walled T-shaped assembly of vessels. Fluid flow in this branching flow structure is studied numerically to predict the configuration that provides greater access to the flow. Our findings indicate, among other results, that an asymmetric flow (i.e., breaking the symmetry of the flow distribution) may occur in this symmetrical dichotomous system. To derive expressions for the optimum branching sizes, the hydraulic resistance of the branched system is computed. Here we show the T-shaped assembly of vessels is only conforming to Hess-Murray's law optimum as long as they have impervious walls. Findings also indicate that the optimum relationship between the sizes of parent and daughter tubes depends on the wall permeability of the assembled tubes. Our results agree with analytical results obtained from a variety of sources and provide new insights into the dynamics within the assembly of vessels.


Subject(s)
Blood Vessels/physiology , Models, Biological , Models, Theoretical , Humans
2.
J Cell Physiol ; 228(4): 824-34, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23018614

ABSTRACT

Exercise is recognized to prevent and attenuate several metabolic and cardiovascular disorders. Obesity is commonly related to cardiovascular diseases, frequently resulting in heart failure and death. To elucidate the effects of acute exercise in heart tissue from obese animals, 12-week-old C57BL6/J obese (ob/ob) and non-obese (ob/OB) mice were submitted to a single bout of swimming and had their hearts analyzed by proteomic techniques. Mice were divided into three groups: control (ob/ob, n = 3; ob/OB, n = 3); a moderate intensity consisting of 20 min of swimming around 90% of Maximal Lactate Steady State (ob/ob, n = 3; ob/OB, n = 3), and a high intensity exercise performed as an incremental overload test (ob/ob, n = 3; ob/OB, n = 3). Obesity modulations were analyzed by comparing ob/ob and ob/OB control groups. Differential 2-DE analysis revealed that single session of exercise was able to up-regulate: myoglobin (ob/ob), aspartate aminotransferase (ob/OB) and zinc finger protein (ob/OB) and down-regulate: nucleoside diphosphate kinase B (ob/OB), mitochondrial aconitase (ob/ob and ob/OB) and fatty acid binding protein (ob/ob). Zinc finger protein and α-actin were up-regulated by the effect of obesity on heart proteome. These data demonstrate the immediate response of metabolic and stress-related proteins after exercise so as contractile protein by obesity modulation on heart proteome.


Subject(s)
Heart/physiopathology , Mice, Obese/genetics , Mice, Obese/metabolism , Obesity/genetics , Obesity/metabolism , Physical Conditioning, Animal/physiology , Proteome/genetics , Proteome/metabolism , Animals , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Mice , Mice, Inbred C57BL , Obesity/physiopathology , Proteomics/methods , Swimming/physiology
3.
BMC Physiol ; 12: 11, 2012 Sep 05.
Article in English | MEDLINE | ID: mdl-22950628

ABSTRACT

BACKGROUND: Regular exercises are commonly described as an important factor in health improvement, being directly related to contractile force development in cardiac cells.In order to evaluate the links between swimming exercise intensity and cardiac adaptation by using high molecular mass proteomics, isogenic Wistar rats were divided into four groups: one control (CG) and three training groups (TG's), with low, moderate and high intensity of exercises.In order to evaluate the links between swimming exercise intensity and cardiac adaptation by using high molecular mass proteomics, isogenic Wistar rats were divided into four groups: one control (CG) and three training groups (TG's), with low, moderate and high intensity of exercises. RESULTS: Findings here reported demonstrated clear morphologic alterations, significant cellular injury and increased energy supplies at high exercise intensities. α-MyHC, as well proteins associated with mitochondrial oxidative metabolism were shown to be improved. α-MyHC expression increase 1.2 fold in high intensity training group when compared with control group. α-MyHC was also evaluated by real-time PCR showing a clear expression correlation with protein synthesis data increase in 8.48 fold in high intensity training group. Other myofibrillar protein, troponin , appear only in high intensity group, corroborating the cellular injury data. High molecular masses proteins such as MRS2 and NADH dehydrogenase, involved in metabolic pathways also demonstrate increase expression, respectily 1.5 and 1.3 fold, in response to high intensity exercise. CONCLUSIONS: High intensity exercise demonstrated an increase expression in some high molecular masses myofibrilar proteins, α-MyHC and troponin. Furthermore this intensity also lead a significant increase of other high molecular masses proteins such as MRS2 and NADH dehydrogenase in comparison to low and moderate intensities. However, high intensity exercise also represented a significant degree of cellular injury, when compared with the individuals submitted to low and moderate intensities.


Subject(s)
Heart/physiopathology , Myocardium/metabolism , Physical Conditioning, Animal/physiology , Proteome/metabolism , Swimming/physiology , Animals , Cation Transport Proteins/metabolism , Energy Metabolism/physiology , Heart Ventricles/metabolism , Heart Ventricles/physiopathology , Male , Metabolic Detoxication, Phase I/physiology , Mitochondria/metabolism , Mitochondria/physiology , Mitochondrial Proteins/metabolism , NADH Dehydrogenase/metabolism , Proteomics/methods , Rats , Rats, Wistar , Troponin/metabolism
4.
J Cell Physiol ; 227(3): 885-98, 2012 Mar.
Article in English | MEDLINE | ID: mdl-21503895

ABSTRACT

Exercise research has always drawn the attention of the scientific community because it can be widely applied to sport training, health improvement, and disease prevention. For many years numerous tools have been used to investigate the several physiological adaptations induced by exercise stimuli. Nowadays a closer look at the molecular mechanisms underlying metabolic pathways and muscular and cardiovascular adaptation to exercise are among the new trends in exercise physiology research. Considering this, to further understand these adaptations as well as pathology attenuation by exercise, several studies have been conducted using molecular investigations, and this trend looks set to continue. Through enormous biotechnological advances, proteomic tools have facilitated protein analysis within complex biological samples such as plasma and tissue, commonly used in exercise research. Until now, classic proteomic tools such as one- and two-dimensional polyacrylamide gel electrophoresis have been used as standard approaches to investigate proteome modulation by exercise. Furthermore, other recently developed in gel tools such as differential gel electrophoresis (DIGE) and gel-free techniques such as the protein labeling methods (ICAT, SILAC, and iTRAQ) have empowered proteomic quantitative analysis, which may successfully benefit exercise proteomic research. However, despite the three decades of 2-DE development, neither classic nor novel proteomic tools have been convincingly explored by exercise researchers. To this end, this review gives an overview of the directions in which exercise-proteome research is moving and examines the main tools that can be used as a novel strategy in exercise physiology investigation.


Subject(s)
Adaptation, Physiological/physiology , Exercise/physiology , Proteomics/methods , Proteomics/trends , Animals , Athletic Performance/physiology , Athletic Performance/trends , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...