Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Inorg Biochem ; 104(11): 1214-23, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20728942

ABSTRACT

We synthesized iron(III), cobalt(II), copper(II) and zinc(II) complexes [Fe(III)(HBPClNOL)Cl(2)]·H(2)O (1), [Co(II)(H(2)BPClNOL)Cl(2)] (2), [Cu(II)(H(2)BPClNOL)Cl]Cl·H(2)O (3), and [Zn(II)(HBPClNOL)Cl] (4), where H(2)BPClNOL is the ligand (N-(2-hydroxybenzyl)-N-(2-pyridylmethyl)[(3-chloro)(2-hydroxy)]propylamine). The complexes obtained were characterized by elemental analysis, IR and UV-visible spectroscopies, electrospray ionization mass spectrometry (ESI-MS), tandem mass spectrometry (MS/MS), and cyclic voltammetry. X-ray diffraction studies were performed for complexes (3) and (4) revealing the presence of mononuclear and dinuclear structures in solid state for (3). However, the zinc complex is mononuclear in solid state. Biological studies of complexes (1)-(4) were carried out in vitro for antimicrobial activity against nine Gram-positive bacteria (Staphylococcus aureus strains RN 6390B, COL, ATCC 25923, Smith Diffuse, Wood 46, enterotoxigenic S. aureus FRI-100 (SEA+), FRI S-6 (SEB+) and SEC FRI-361) and animal strain S. aureus LSA 88 (SEC/SED/TSST-1+). The following sequence of inhibition promoted by the complexes was observed: (4)>(2)>(3)>(1), showing the effect of the metal on the biological activity. To directly observe the morphological changes of the internal structure of bacterial cells after the treatment, transmission electron microscopy (TEM) was employed. For the most active complex [Zn(II)(HBPClNOL)Cl] (4), granulation deposits around the genetic material and internal material leaking were clearly detected.


Subject(s)
Anti-Bacterial Agents/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Microscopy, Electron, Transmission/methods , Cobalt/chemistry , Cobalt/pharmacology , Coordination Complexes/chemical synthesis , Copper/chemistry , Copper/pharmacology , Ferric Compounds/chemical synthesis , Ferric Compounds/chemistry , Ferric Compounds/pharmacology , Ligands , Microbial Sensitivity Tests , Molecular Structure , Staphylococcus aureus/drug effects , Staphylococcus aureus/ultrastructure , X-Ray Diffraction , Zinc/chemistry , Zinc/pharmacology
2.
Inorg Chem ; 48(10): 4569-79, 2009 May 18.
Article in English | MEDLINE | ID: mdl-19425615

ABSTRACT

Herein, we report reactivity studies of the mononuclear water-soluble complex [Mn(II)(HPClNOL)(eta(1)-NO(3))(eta(2)-NO(3))] 1, where HPClNOL = 1-(bis-pyridin-2-ylmethyl-amino)-3-chloropropan-2-ol, toward peroxides (H(2)O(2) and tert-butylhydroperoxide). Both the catalase (in aqueous solution) and peroxidase (in CH(3)CN) activities of 1 were evaluated using a range of techniques including electronic absorption spectroscopy, volumetry (kinetic studies), pH monitoring during H(2)O(2) disproportionation, electron paramagnetic resonance (EPR), electrospray ionization mass spectrometry in the positive ion mode [ESI(+)-MS], and gas chromatography (GC). Electrochemical studies showed that 1 can be oxidized to Mn(III) and Mn(IV). The catalase-like activity of 1 was evaluated with and without pH control. The results show that the pH decreases when the reaction is performed in unbuffered media. Furthermore, the activity of 1 is greater in buffered than in unbuffered media, demonstrating that pH influences the activity of 1 toward H(2)O(2). For the reaction of 1 with H(2)O(2), EPR and ESI(+)-MS have led to the identification of the intermediate [Mn(III)Mn(IV)(mu-O)(2)(PClNOL)(2)](+). The peroxidase activity of 1 was also evaluated by monitoring cyclohexane oxidation, using H(2)O(2) or tert-butylhydroperoxide as the terminal oxidants. Low yields (<7%) were obtained for H(2)O(2), probably because it competes with 1 for the catalase-like activity. In contrast, using tert-butylhydroperoxide, up to 29% of cyclohexane conversion was obtained. A mechanistic model for the catalase activity of 1 that incorporates the observed lag phase in O(2) production, the pH variation, and the formation of a Mn(III)-(mu-O)(2)-Mn(IV) intermediate is proposed.


Subject(s)
Biomimetic Materials/chemistry , Catalase , Manganese/chemistry , Organometallic Compounds/chemistry , Peroxidase , Catalysis , Electron Spin Resonance Spectroscopy , Oxygen/chemistry , Spectrometry, Mass, Electrospray Ionization
SELECTION OF CITATIONS
SEARCH DETAIL
...