Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Cell ; 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39243764

ABSTRACT

There is documented sex disparity in cutaneous melanoma incidence and mortality, increasing disproportionately with age and in the male sex. However, the underlying mechanisms remain unclear. While biological sex differences and inherent immune response variability have been assessed in tumor cells, the role of the tumor-surrounding microenvironment, contextually in aging, has been overlooked. Here, we show that skin fibroblasts undergo age-mediated, sex-dependent changes in their proliferation, senescence, ROS levels, and stress response. We find that aged male fibroblasts selectively drive an invasive, therapy-resistant phenotype in melanoma cells and promote metastasis in aged male mice by increasing AXL expression. Intrinsic aging in male fibroblasts mediated by EZH2 decline increases BMP2 secretion, which in turn drives the slower-cycling, highly invasive, and therapy-resistant melanoma cell phenotype, characteristic of the aged male TME. Inhibition of BMP2 activity blocks the emergence of invasive phenotypes and sensitizes melanoma cells to BRAF/MEK inhibition.

2.
Cancer Res Commun ; 4(8): 1908-1918, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39007351

ABSTRACT

Aged patients with melanoma (>65 years old) have more aggressive disease relative to young patients (<55 years old) for reasons that are not completely understood. Analysis of the young and aged secretome from human dermal fibroblasts identified >5-fold levels of IGF-binding protein 2 (IGFBP2) in the aged fibroblast secretome. IGFBP2 functionally triggers upregulation of the PI3K-dependent fatty acid biosynthesis program in melanoma cells. Melanoma cells co-cultured with aged dermal fibroblasts have higher levels of lipids relative to those co-cultured with young dermal fibroblasts, which can be lowered by silencing IGFBP2 expression in fibroblasts prior to treating with conditioned media. Conversely, ectopically treating melanoma cells with recombinant IGFBP2 in the presence of conditioned media from young fibroblasts or overexpressing IGFBP2 in melanoma cells promoted lipid synthesis and accumulation in melanoma cells. Treatment of young mice with rIGFBP2 increases tumor growth. Neutralizing IGFBP2 in vitro reduces migration and invasion in melanoma cells, and in vivo studies demonstrate that neutralizing IGFBP2 in syngeneic aged mice reduces tumor growth and metastasis. Our results suggest that aged dermal fibroblasts increase melanoma cell aggressiveness through increased secretion of IGFBP2, stressing the importance of considering age when designing studies and treatment. SIGNIFICANCE: The aged microenvironment drives metastasis in melanoma cells. This study reports that IGFBP2 secretion by aged fibroblasts induces lipid accumulation in melanoma cells, driving an increase in tumor invasiveness. Neutralizing IGFBP2 decreases melanoma tumor growth and metastasis.


Subject(s)
Insulin-Like Growth Factor Binding Protein 2 , Melanoma , Neoplasm Invasiveness , Insulin-Like Growth Factor Binding Protein 2/metabolism , Insulin-Like Growth Factor Binding Protein 2/genetics , Humans , Animals , Melanoma/pathology , Melanoma/metabolism , Mice , Cell Line, Tumor , Fibroblasts/metabolism , Fibroblasts/pathology , Cell Movement , Aged , Middle Aged , Lipids , Lipid Metabolism , Age Factors , Mice, Inbred C57BL
3.
J Cell Biochem ; 124(1): 31-45, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36565460

ABSTRACT

Radiotherapy is one of the most common modalities for the treatment of a wide range of tumors, including colorectal cancer (CRC); however, radioresistance of cancer cells remains a major limitation for this treatment. Following radiotherapy, the activities of various cellular mechanisms and cell signaling pathways are altered, resulting in the development of radioresistance, which leads to therapeutic failure and poor prognosis in patients with cancer. Furthermore, even though several inhibitors have been developed to target tumor resistance, these molecules can induce side effects in nontumor cells due to low specificity and efficiency. However, the role of these mechanisms in CRC has not been extensively studied. This review discusses recent studies regarding the relationship between radioresistance and the alterations in a series of cellular mechanisms and cell signaling pathways that lead to therapeutic failure and tumor recurrence. Our review also presents recent advances in the in vitro/in vivo study models aimed at investigating the radioresistance mechanism in CRC. Furthermore, it provides a relevant biochemical basis in theory, which can be useful to improve radiotherapy sensitivity and prolong patient survival.


Subject(s)
Colorectal Neoplasms , Signal Transduction , Humans , Radiation Tolerance , Colorectal Neoplasms/metabolism , Cell Line, Tumor
4.
Cell Biol Int ; 45(3): 662-673, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33300198

ABSTRACT

Transforming growth factor-ß (TGF-ß) plays a dual role acting as tumor promoter or suppressor. Along with cyclooxygenase-2 (COX-2) and oncogenic Ras, this multifunctional cytokine is deregulated in colorectal cancer. Despite their individual abilities to promote tumor growth and invasion, the mechanisms of cross regulation between these pathways is still unclear. Here, we investigate the effects of TGF-ß, Ras oncogene and COX-2 in the colorectal cancer context. We used colon adenocarcinoma cell line HT-29 and Ras-transformed IEC-6 cells, both treated with prostaglandin E2 (PGE2 ), TGF-ß or a combined treatment with these agents. We demonstrated that PGE2 alters the subcellular localization of E-cadherin and ß-catenin and enhanced the tumorigenic potential in HT-29 cells. This effect was inhibited by TGF-ß, indicating a tumor suppressor role. Conversely, in Ras-transformed IEC-6 cells, TGF-ß induced COX-2 expression and increased invasiveness, acting as a tumor promoter. In IEC-6 Ras-transformed cells, TGF-ß increased nuclear ß-catenin and Wnt/ß-catenin activation, opposite to what was seen in the PGE2 and TGF-ß joint treatment in HT-29 cells. Together, our findings show that TGF-ß increases COX-2 levels and induces invasiveness cooperating with Ras in a Wnt/ß-catenin activation-dependent manner. This shows TGF-ß dual regulation over COX-2/PGE2 tumor promotion depending on the H-Ras and Wnt/ß-catenin pathways activation status in intestinal cancer cells.


Subject(s)
Carcinogenesis/metabolism , Carcinogenesis/pathology , Colorectal Neoplasms/metabolism , Cyclooxygenase 2/metabolism , Dinoprostone/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism , Transforming Growth Factor beta/metabolism , Wnt Signaling Pathway , Cadherins/metabolism , Cell Movement , Cell Proliferation , Colorectal Neoplasms/pathology , HT29 Cells , Humans , Neoplasm Invasiveness , TCF Transcription Factors/metabolism , Transcription, Genetic , beta Catenin/metabolism
5.
Sci Rep ; 8(1): 11285, 2018 07 26.
Article in English | MEDLINE | ID: mdl-30050103

ABSTRACT

Annexin A2 (ANXA2) is upregulated in several malignancies, including colorectal cancer (CRC). However, there is little knowledge on the molecular mechanisms involved to its upregulation. The aim of this study was to identify the mechanism through which ANXA2 overexpression leads to CRC progression and evaluate its potential prognostic value. We used human CRC samples to analyse the correlation between ANXA2 levels and tumour staging. ANXA2 expression was increased in CRC tissues compared to normal colon tissues. In addition, we observe increased ANXA2 levels in stage IV tumours and metastasis, when compared to stage I-III. Whereas E-cadherin, an epithelial marker, decreased in stage II-IV and increased in metastasis. We've also shown that TGF-ß, a classic EMT inductor, caused upregulation of ANXA2, and internalization of both E-cadherin and ANXA2 in CRC cells. ANXA2 silencing hindered TGF-ß-induced invasiveness, and inhibitors of the Src/ANXA2/STAT3 pathway reversed the EMT. In silico analysis confirmed overexpression of ANXA2 and association to the consensus moleculars subtypes (CMS) with the worst prognosis. Therefore, ANXA2 overexpression play a pivotal role in CRC invasiveness through Src/ANXA2/STAT3 pathway activation. The association of ANXA2 to distinct CMSs suggests the possible use of ANXA2 as a prognostic marker or directed target therapy.


Subject(s)
Annexin A2/metabolism , Colorectal Neoplasms/pathology , Epithelial-Mesenchymal Transition , Neoplasm Invasiveness , STAT3 Transcription Factor/metabolism , src-Family Kinases/metabolism , Colon/pathology , Humans , Neoplasm Staging , Transforming Growth Factor beta/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL