Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Biol Trace Elem Res ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773036

ABSTRACT

A mining tailing dam rupture in Brazil in November 2015 released millions of tons of mining waste into the Rio Doce ecosystem, leading to long-term aquatic ecosystem impacts. Although multiple lines of evidence indicate tailings associations with potentially toxic elements in estuarine sediments and biological impact and bioaccumulation pathways in fishes, the extent of contamination in base benthic species is still largely unknown. Moreover, Rare Earth Elements (REE) have not received any attention in this regard. This study assessed REE in fiddler crabs (Minuca rapax) sampled from the Rio Doce estuary in 2017, nearly 2 years after the disaster. The ΣREE in crab hepatopancreas and muscle were high (327.83 mg kg-1 w.w. and 33.84 mg kg-1 w.w., respectively, compared to other assessments in crabs, indicating a preference for REE bioaccumulation in the hepatopancreas compared to muscle. Neodimium, La, and Ce were detected at the highest concentrations. The REE from the Rio Doce Basin were, thus, transported and deposited in the estuary with the mine tailings slurry, leading to bioaccumulation in crabs. This may lead to trophic effects and other ecological impacts not readily measured by typical impact assessment studies, revealing an invisible and not typically acknowledged damage to the Rio Doce estuary.

2.
Mar Pollut Bull ; 179: 113671, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35468471

ABSTRACT

Metal contamination has never been assessed in Ampullae of Lorenzini. This study employed Rhizoprionodon lalandii, as an ecotoxicological model to investigate potential metal accumulation in Ampullae of Lorenzini jelly. No differences between sexes were observed regarding jelly metal concentrations at Rio das Ostras (RJ) or Santos (SP). Statistically significant correlations were noted between total lengths (TL) and condition factors and several metals at both sampling sites, demonstrating the potential for Chondrichthyan sensory capacity disruption and possible effects on foraging success. Maternal metal transfer to Ampullae jelly was confirmed. Rhizoprionodon lalandii is thus, a good model to assess Ampullae of Lorenzini contamination, as this electrosensory organ seems to be highly vulnerable to metal contamination.


Subject(s)
Metalloids , Sharks , Animals , Brazil , Ecotoxicology , Metals , Seafood
3.
Aquat Toxicol ; 245: 106122, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35180455

ABSTRACT

Contaminants of emerging concern (CEC) are routinely detected in aquatic environments, especially pharmaceuticals, such as carbamazepine (CBZ), and neonicotinoid pesticides, like acetamiprid (ACT). CECs can interact with each other and with other legislated contaminants like Cd, resulting in unknown effects. Most studies evaluate only the effects of single contaminant exposures on aquatic biota. Therefore, the aim of the present study was to assess the effects of both single and combined CBZ, ACT and Cd exposures on zebrafish brain and liver oxidative stress parameters and metal homeostasis. The biomarkers catalase (CAT), glutathione-S-transferase (GST), total thiols (TOT), metallothionein (MT) and malondialdehyde (MDA) and the essential elements Ca, Cu, K, Na, Mg, Mn and Zn were evaluated after 96-hour static exposures. CBZ, ACT and Cd single (brain and liver) and combined (liver) treatments resulted in oxidative effects in both fish organs, also leading to metal (Ca, Mg, K, Mn, Zn and Cu) homeostasis alterations. ACT exposure resulted in the greatest adverse effects in the brain, while CBZ was the cause of major element homeostasis and oxidative stress alterations in the liver. Lower LPO levels were observed in the combined treatments compared to single treatments, suggesting interactions and contaminant effect attenuation. This study is the first to evaluate the initial effects of combined CBZ, ACT and Cd exposures in zebrafish, paving the way for further investigations concerning other biomarkers during longer exposure times.


Subject(s)
Water Pollutants, Chemical , Zebrafish , Animals , Cadmium/toxicity , Carbamazepine/toxicity , Homeostasis , Neonicotinoids , Oxidative Stress , Water Pollutants, Chemical/toxicity
4.
Biol Trace Elem Res ; 200(1): 402-412, 2022 Jan.
Article in English | MEDLINE | ID: mdl-33619638

ABSTRACT

Perna perna mussels, abundant throughout the Brazilian coast, are routinely applied as bioindicators in environmental monitoring actions due to their sessile and filter-feeding characteristics. In addition, they are noteworthy for their food importance, especially for coastal populations. In this context, the aim of this study was to investigate elemental contamination in commercially marketed and highly consumed P. perna samples from the highly impacted Guanabara Bay, Rio de Janeiro, Brazil. A total of 30 mussels were sampled, and elemental concentrations (As, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Se, V, and Zn) were determined in adductor muscle samples by inductively coupled plasma mass spectrometry (ICP-MS). Human consumption risks were assessed by comparisons to Brazilian and international legislations. No significant differences between sex were observed for all analyzed elements. Even when analyzing only the adductor muscle, all mussel samples exceeded the Brazilian limit for Cr, while 12 samples exceeded the limit for Se. When compared to other regulatory agencies, As and Zn levels were higher than the limits set by China, New Zealand, and the USA. Estimated daily dietary intake values were not above limits imposed by the Food and Agriculture Organization of the United Nations/World Health Organization for any of the assessed elements, although it is important to note that only the adductor muscle was assessed. Therefore, continuous metal and metalloid monitoring in bivalves in the study region is suggested, as metal transport and bioavailability, especially in coastal estuaries such as Guanabara Bay, which are currently undergoing significant changes due to anthropogenic activities.


Subject(s)
Perna , Water Pollutants, Chemical , Animals , Brazil , Environmental Monitoring , Estuaries , Humans , Water Pollutants, Chemical/analysis
5.
Arch Environ Occup Health ; 77(8): 611-620, 2022.
Article in English | MEDLINE | ID: mdl-34554048

ABSTRACT

We examined the association between exposure to metals, metalloids, and oxidative stress biomarkers among rural community residents in Brazil. Multiple linear regression was used to evaluate associations between serum metal and metalloid concentrations and blood oxidative stress biomarkers, adjusting for sex, age, education, smoking, and alcohol use. After adjustment for covariates, glutathione peroxidase activity (GPx) was inversely and significantly associated with an increase in serum arsenic (As) levels. Positive and significant associations were seen between elevated glutathione reductase (GR) activity and serum cadmium (Cd), barium (Ba), and lead (Pb) concentrations. In addition, we observed a significant increase in malondialdehyde (MDA) levels in association with an increase in Ba levels. These findings suggest that toxic metals and metalloids such as As, Ba, Cd, and Pb alter antioxidant enzyme activities. In addition, Ba seems to promote lipid peroxidation.


Subject(s)
Cadmium , Metalloids , Antioxidants , Biomarkers , Brazil , Cadmium/analysis , Lead , Oxidative Stress
6.
Mar Pollut Bull ; 168: 112472, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34004480

ABSTRACT

This study comprises the first record of a juvenile Giant Devil Ray specimen for Rio de Janeiro, Southeastern Brazil, and its metal and metalloid contents. A scientometric assessment was also performed for the Manta and Mobula genera. Only five records were found, and only As, Cd, Pb, Hg, Pt, Pd and Rh have been assessed. All studies but one concerned human consumption. A significant knowledge gap on metal and metalloid ecotoxicology for mobulid rays is noted, indicating the emergence of a new field of research that th may be applied for wildlife conservation and management in response to anthropogenic contamination. Our study is also the first to provide Al, Cr, Cu, Fe, Mn, Sr, Ti, V and Zn contents for muscle, liver, brain and kidney for a mobulid ray and one of the scarce reports concerning As, Cd, Hg and Pb in muscle, liver and kidney.


Subject(s)
Elasmobranchii , Metalloids , Metals, Heavy , Animals , Brazil , Ecotoxicology , Environmental Monitoring , Humans , Metalloids/analysis , Metals/analysis , Metals, Heavy/analysis
7.
Mar Pollut Bull ; 168: 112398, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33906010

ABSTRACT

Contamination by metals is among the most pervasive anthropogenic threats to the environment. Despite the ecological importance of marine apex predators, the potential negative impacts of metal bioaccumulation and biomagnification on the health of higher trophic level species remains unclear. To date, most toxicology studies in sharks have focused on measuring metal concentrations in muscle tissues associating human consumption and food safety, without further investigating potential impacts on shark health. To help address this knowledge gap, the present study evaluated metal concentrations in the gills, muscle, liver and rectal gland of coastal sharks opportunistically sampled from Brazilian waters and tested for potential relationships between metal bioaccumulation and general shark health and homeostatic balance metrics. Results revealed high metal concentrations in all four tissue types, with levels varying in relation to size, sex, and life-stage. Metal concentrations were also associated with serum biomarkers (urea, lactate, ALT, triglycerides, alkaline phosphatase, and phosphorus) and body condition, suggesting potential negative impacts on organismal health.


Subject(s)
Sharks , Animals , Bioaccumulation , Brazil , Humans , Metals , Seafood
8.
PeerJ ; 8: e10266, 2020.
Article in English | MEDLINE | ID: mdl-33194429

ABSTRACT

BACKGROUND: The Rio Doce estuary, in Brazil, was impacted by the deposition of iron mine tailings, caused by the collapse of a dam in 2015. Based on published baseline datasets, the estuary has been experiencing chronic trace metal contamination effects since 2017, with potential bioaccumulation in fishes and human health risks. As metal and metalloid concentrations in aquatic ecosystems pose severe threats to the aquatic biota, we hypothesized that the trace metals in estuarine sediments nearly two years after the disaster would lead to bioaccumulation in demersal fishes and result in the biosynthesis of metal-responsive proteins. METHODS: We measured As, Cd, Cr, Cu, Fe, Mn, Pb, Se and Zn concentrations in sediment samples in August 2017 and compared to published baseline levels. Also, trace metals (As, Cd, Cr, Cu, Fe, Hg, Mn, Pb, Se and Zn) and protein (metallothionein and reduced glutathione) concentrations were quantified in the liver and muscle tissues of five fish species (Cathorops spixii, Genidens genidens, Eugerres brasilianus, Diapterus rhombeus and Mugil sp.) from the estuary, commonly used as food sources by local populations. RESULTS: Our results revealed high trace metal concentrations in estuarine sediments, when compared to published baseline values for the same estuary. The demersal fish species C. spixii and G. genidens had the highest concentrations of As, Cr, Mn, Hg, and Se in both, hepatic and muscle, tissues. Trace metal bioaccumulation in fish was correlated with the biosynthesis of metallothionein and reduced glutathione in both, liver and muscle, tissues, suggesting active physiological responses to contamination sources. The trace metal concentrations determined in fish tissues were also present in the estuarine sediments at the time of this study. Some elements had concentrations above the maximum permissible limits for human consumption in fish muscles (e.g., As, Cr, Mn, Se and Zn), suggesting potential human health risks that require further studies. Our study supports the high biogeochemical mobility of toxic elements between sediments and the bottom-dwelling biota in estuarine ecosystems.

9.
Mar Pollut Bull ; 153: 110975, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32275533

ABSTRACT

Titanium (Ti), used in many dailyuse products, such as shampoos and sunscreen filters, in the form of TiO2 nanoparticles (NPs), may elicit adverse marine biota effects. Marine mammal Ti data is scarce, and subcellular distribution and detoxification information is non-existent. Ti concentrations and metalloprotein detoxification in Pontoporia blainvillei and Steno bredanensis dolphins from Southeastern Brazil were assessed. Metallothionein (MT) concentrations were determined spectrophotometrically, total and subcellular Ti, by ICP-MS and detoxification, by HPLC-ICP-MS. Ti detoxification occurred through MT complexation. Statistical Ti-MT associations were observed in S. bredanensis liver, indicating TiO2 NPs contamination, as Ti binds to MT only as NPs. MT-Ti correlations were observed for both the coastal (P. blainvillei) and offshore (S. bredanensis) dolphins, evidencing oceanic TiO2 diffusion. Ti detoxification through binding to reduced glutathione occurred in both species. Thermostable subcellular fractions are a valuable tool for cetacean Ti detoxification assessments and should be applied to conservation efforts.


Subject(s)
Dolphins/metabolism , Titanium/metabolism , Water Pollutants, Chemical/metabolism , Animals , Brazil , Inactivation, Metabolic
10.
Mar Pollut Bull ; 146: 263-273, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31426156

ABSTRACT

Metals are subject to internal subcellular compartmentalization, altering their bioavailability. Thus, subcellular metal assessments are crucial in biomonitoring efforts. Metal distribution in three subcellular fractions (insoluble - ISF, thermolabile - TLF and thermostable - TSF) were determined by ICP-MS in Steno bredanensis specimens from Southeastern Brazil. Associations between metals, metallothionein (MT) and reduced glutathione (GSH) were also investigated. Differential metal-detoxification mechanisms were observed. MT detoxification was mostly noted for As, Cd, and Pb, while Cu, Cr, Hg, Ni, Se and Ti displayed lower MT-associations. Fe, Zn and Se, on the other hand, were poorly associated to MT, and mostly present in the ISF, indicating low bioavailability. This is the first report on subcellular Sn and Ti distribution in cetaceans and the first in this species in Brazil. Potential protective roles of essential metals against toxic elements are postulated. This study indicates that important biochemical detoxification information is obtained through subcellular fraction analyses in marine mammals.


Subject(s)
Dolphins/metabolism , Environmental Monitoring/methods , Metallothionein/metabolism , Metals/metabolism , Subcellular Fractions/metabolism , Water Pollutants, Chemical/metabolism , Animals , Brazil , Glutathione/metabolism , Inactivation, Metabolic , Metals, Heavy/analysis , Tin/metabolism , Titanium/metabolism
11.
J Trace Elem Med Biol ; 34: 70-8, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26854248

ABSTRACT

Metallomic studies regarding environmental contamination by metals are of value in elucidating metal uptake, trafficking, accumulation and metabolism in biological systems. Many proven bioindicator species, such as bivalves, have not yet, however, been well-characterized regarding their metalloprotein expression in response to environmental contaminants. In this context, the aim of the present study was to investigate metalloprotein expressions in the thermostable protein fraction of muscle tissue and digestive glands from mussels (Perna perna) from three differentially metal-contaminated sites in Southeastern Brazil in comparison with a reference site. The thermostable protein fractions were analyzed by SDS-PAGE and SEC-HPLC-ICP-MS. Metal content was also determined in both the crude and the purified extracts. Several inter-organ differences were observed, which is to be expected, while inter-site differences regarding thermostable protein content were also verified, indicating accumulation of these elements in muscle tissue and digestive glands and disruption of homeostasis of essential elements, with detoxification attempts by metal-bound proteins, since all metalloproteins present in both matrices eluted bound to at least one non-essential metal. These results are also noteworthy with regard to the adopted reference site, that also seems to be contaminated by toxic metals.


Subject(s)
Environmental Monitoring/methods , Metalloproteins/analysis , Perna/metabolism , Water Pollutants, Chemical/analysis , Animals , Brazil
12.
Ecotoxicol Environ Saf ; 107: 55-60, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24905697

ABSTRACT

Metal concentrations (Cu, Pb, Zn and Cd) were determined in muscle, gills, soft tissues and eggs in male, non-ovigerous and ovigerous female Callinectes sp. specimens from a reference site in Southeastern Brazil. Metallothionein (MT) and reduced glutathione (GSH) levels were also determined. Results demonstrate that sex has a significant influence on metal, MT and GSH concentrations. Significant maternal transfer of Pb and Zn from ovigerous females to eggs was verified, while female crabs, both ovigerous and non-ovigerous, showed elevated GSH and MT in viscera when compared to males, indicating possible MT role in excreting metals to eggs in ovigerous females of this species. Several strong statistical correlations between metals and MT indicate MTs role in detoxification of both toxic and essential elements in different organs. Pb and Zn were significantly correlated to GSH, indicating oxidative stress caused by the former and a direct link between Zn and GSH in maintaining homeostasis. Regarding human consumption, metal concentrations were lower than the maximum permissible levels established by international and Brazilian regulatory agencies, indicating that this species is safe for human consumption concerning this parameter. The presence of metals in Callinectes sp., however, is still of importance considering that this is a key species within the studied ecosystem and, therefore, plays a major role in the transference of pollutants to higher trophic levels. In addition, the presence of significant metal concentrations found in eggs must be considered in this context, since crab eggs are eaten by several other species, such as shorebirds, seabirds, and fish. Also, to the best of our knowledge, this is the first study regarding both MT and GSH levels in Callinectes sp. eggs and is of interest in the investigation of molecular mechanisms regarding metal exposure in these crustaceans. Data reported in this study support the conclusions from previous reports, provide mechanistic insights regarding metal exposure, metallothionein and oxidative stress induction in this species and also present novel data regarding eggs.


Subject(s)
Brachyura/drug effects , Glutathione/analysis , Metallothionein/analysis , Metals, Heavy/toxicity , Oxidative Stress , Animals , Body Weight , Brachyura/chemistry , Brachyura/metabolism , Brazil , Female , Gills/chemistry , Inactivation, Metabolic , Male , Metals, Heavy/analysis , Muscles/chemistry , Ovum/chemistry , Sex Characteristics
13.
Ciênc. rural ; 44(5): 943-949, maio 2014. tab
Article in English | LILACS | ID: lil-707039

ABSTRACT

The concentrations of twenty-five elements (Al, As, Ba, Bi, Ca, Cd, Cr, Cu, Fe, Ga, K, Li, Mg, Mn, Mo, Na, Ni, Pb, Rb , Sb, Se, Sn, Sr, V and Zn) were determined in three edible mushrooms, Shiitake (Lentinula edodes), Black Shimeji (Pleurotus ostreatusi) and Cardoncello (Pleurotus eryngyii) from Petrópolis, Rio de Janeiro, Brazil. Samples were collected along the year 2010 and their preparations were made after drying, milling, an acid pre-digestion and a decomposition procedure in a muffle furnace. The analytical techniques employed for the elements determination were Mass Spectrometry with Inductively Coupled Plasma and Flame Atomic Absorption Spectrometry. Two certified reference materials, Apple Leaves and Mussel Tissue, were used for the evaluation of the analytical procedure and recovery values around 98% were obtained. The results showed that the analyzed mushrooms have high levels of Cu, Fe, K, Mg, Mn and Zn containing more than 30% the recommended daily intake for these nutrients according to Brazilian legislation. These mushrooms presented a very low ratio Na/K. Regarding the levels of some contaminants, the mushrooms had concentrations of Cd, Pb and As below the recommended maximum limits allowed by Brazilian legislation.


As concentrações de vinte e cinco elementos (Al, As, Ba, Bi, Ca, Cd, Cr, Cu, Fe, Ga, K, Li, Mg, Mn, Mo, Na, Ni, Pb, Rb, Sb, Se, Sn, Sr, V e Zn) foram determinadas em três cogumelos comestíveis, Lentinula edodes (Shiitake), Pleurotus ostreatusi (Shimeji preto) e Pleurotus eryngii (Cardoncello) provenientes de Petrópolis, Rio de Janeiro, Brasil. As amostras foram coletadas durante o ano de 2010 e o preparo efetuado por secagem, trituração, pré-digestão ácida e mineralização em mufla. As técnicas analíticas utilizadas na determinação dos elementos foram a espectrometria de massa com plasma indutivamente acoplado e a absorção atômica com chama. Dois materiais de referência certificados, Apple Leaves e Mussel Tissue, foram utilizados para a avaliação do procedimento analítico e valores de recuperação em torno de 98 % foram obtidos. Os resultados demonstraram que os cogumelos estudados apresentam altos teores de Cu, Fe, K, Mg, Mn e Zn, contendo mais de 30% das quantidades recomendadas para ingestão diária desses nutrientes, conforme a legislação brasileira. Esses cogumelos possuem uma razão Na/K muito baixa e os níveis de alguns contaminantes, Cd, Pb e As, estão abaixo dos limites máximos permitidos pela legislação em vigor.

SELECTION OF CITATIONS
SEARCH DETAIL
...