Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PeerJ ; 9: e11461, 2021.
Article in English | MEDLINE | ID: mdl-34249482

ABSTRACT

BACKGROUND: Sugarcane is a crop of global importance and has been expanding to areas with soils containing high levels of exchangeable aluminum (Al), which is a limiting factor for crop development in acidic soils. The study of the sugarcane physiological and nutritional behavior together with patterns of gene expression in response to Al stress may provide a basis for effective strategies to increase crop productivity in acidic soils. METHODS: Sugarcane cultivars were evaluated for physiological parameters (photosynthesis, stomatal conductance, and transpiration), nutrient (N, P, K, Ca, Mg, and S) and Al contents in leaves and roots and gene expression, of the genes MDH, SDH by qPCR, both related to the production of organic acids, and SOD, related to oxidative stress. RESULTS: Brazilian sugarcane RB867515, RB928064, and RB935744 cultivars exhibited very different responses to induced stress by Al. Exposure to Al caused up-regulation (SOD and MDH) or down-regulation (SDH, MDH, and SOD), depending on the cultivar, Al level, and plant tissue. The RB867515 cultivar was the most Al-tolerant, showing no decline of nutrient content in plant tissue, photosynthesis, transpiration, and stomatal conductance after exposure to Al; it exhibited the highest Al content in the roots, and showed important MDH and SOD gene expression in the roots. RB928064 only showed low expression of SOD in roots and leaves, while RB935744 showed important expression of the SOD gene only in the leaves. Sugarcane cultivars were classified in the following descending Al-tolerance order: RB867515 > RB928064 = RB935744. These results may contribute to the obtention of Al-tolerant cultivars that can play their genetic potential in soils of low fertility and with low demand for agricultural inputs; the selection of potential plants for breeding programs; the elucidation of Al detoxification mechanisms employed by sugarcane cultivars.

2.
Int J Biol Macromol ; 152: 546-553, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32109474

ABSTRACT

Phytocystatins are plant cystatins that are related to several physiological processes regulating endogenous cysteine proteases involved in seed development and germination, programmed cell death and response to stress conditions. In addition, phytocystatins can act in plant defense against exogenous peptidases from herbivorous insects, pathogens and nematodes. Considering that Citrus fruits are important to human nutrition and represent a high value crop in worldwide agriculture, in the present work, we performed the identification of putative cystatins from Citrus sinensis and from Citrus clementine and submitted them to phylogenetic analysis. Six cystatins from each species were identified as orthologous and classified into three well supported phylogenetic groups. Five cystatins representative of the phylogenetic groups were recombinantly expressed and the in vitro studies revealed them to be potent inhibitors against the cysteine peptidases papain, legumain, human cathepsins (B, L, S, K) and a cathepsin B-like from Diaphorina citri (the Asian Citrus psyllid). Our findings provide the C. clementina and C. sinensis cystatins classification and an enzyme-inhibitor interactions profile, which may reflect an evolutionary process of Citrus cystatins related to gene functions as initial germination rates and seedlings development as well associated to plant defense against pathogens, as insects and nematodes.


Subject(s)
Citrus sinensis/genetics , Citrus/genetics , Cystatins/metabolism , Plant Proteins/metabolism , Animals , Biotechnology , Cathepsins/antagonists & inhibitors , Citrus/metabolism , Citrus sinensis/metabolism , Computer Simulation , Cystatins/genetics , Cysteine Proteinase Inhibitors , Germination , Humans , Kinetics , Likelihood Functions , Nematoda , Phylogeny , Plant Proteins/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Seeds/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...