Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Neurogastroenterol Motil ; 32(6): e13824, 2020 06.
Article in English | MEDLINE | ID: mdl-32096330

ABSTRACT

BACKGROUND: BALB/c and C57BL/6 mice are widely used in biomedical research; however, the differences between strains are still underestimated. Our aims were to develop an experimental protocol to evaluate the duodenal contractility and gastrointestinal transit in mice using the Alternating Current Biosusceptometry (ACB) technique and to compare gastrointestinal motor function and morphology between BALB/c and C57BL/6 strains. METHODS: Male mice were used in experiments (a) duodenal contractility: animals which had a magnetic marker surgically fixed in the duodenum to determine the frequency and amplitude of contractions and (b) gastrointestinal transit: animals which ingested a magnetically marked chow to calculate the Oro-Anal Transit Time (OATT) and the Fecal Pellet Elimination Rate (FPER). The animals were killed after the experiments for organ collection and morphometric analysis. KEY RESULTS: BALB/c and C57BL/6 had two different duodenal frequencies (high and low) with similar amplitudes. After 10 hours of monitoring, BALB/c eliminated around 89% of the ingested marker and C57BL/6 eliminated 33%; OATT and FPER were slower for C57BL/6 compared with BALB/c. The OATT and amplitude of low frequency had a strong positive correlation in C57BL/6. For BALB/c, the gastric muscular layer was thicker compared to that measured for C57BL/6. CONCLUSIONS AND INFERENCES: The experimental protocol to evaluate duodenal contractility and fecal magnetic pellets output using the ACB technique in mice was successfully established. BALB/c strains had higher duodenal frequencies and a shorter time to eliminate the ingested marker. Our results showed differences in both motor function and gastrointestinal morphology between BALB/c and C57BL/6 strains.


Subject(s)
Duodenum/cytology , Duodenum/physiology , Gastric Fundus/cytology , Gastrointestinal Motility , Animals , Gastrointestinal Transit , Laparotomy , Male , Mice, Inbred BALB C , Mice, Inbred C57BL , Muscle Contraction , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL