Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Physiol Genomics ; 53(11): 441-455, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34643103

ABSTRACT

Circadian disruption increased insulin resistance and decreased mammary development in late gestation, nonlactating (dry) cows. The objective was to measure the effect of circadian disruption on transcriptomes of the liver and mammary gland. At 35 days before expected calving (BEC), multiparous dry cows were assigned to either control (CON) or phase-shifted treatments (PS). CON was exposed to 16-h light and 8-h dark. PS was exposed to 16-h light to 8-h dark, but phase of the light-dark cycle was shifted 6 h every 3 days. On day 21 BEC, liver and mammary were biopsied. RNA was isolated (n = 6 CON, n = 6 PS per tissue), and libraries were prepared and sequenced using paired-end reads. Reads mapping to bovine genome averaged 27 ± 2 million and aligned to 14,222 protein-coding genes in liver and 15,480 in mammary analysis. In the liver, 834 genes, and in the mammary gland, 862 genes were different (nominal P < 0.05) between PS and CON. In the liver, genes upregulated in PS functioned in cholesterol biosynthesis, endoplasmic reticulum stress, wound healing, and inflammation. Genes downregulated in liver function in cholesterol efflux. In the mammary gland, genes upregulated functioned in mRNA processing and transcription and downregulated genes encoded extracellular matrix proteins and proteases, cathepsins and lysosomal proteases, lipid transporters, and regulated oxidative phosphorylation. Increased cholesterol synthesis and decreased efflux suggest that circadian disruption potentially increases the risk of fatty liver in cows. Decreased remodeling and lipid transport in mammary may decrease milk production capacity during lactation.


Subject(s)
Circadian Rhythm/genetics , Fatty Liver/genetics , Liver/pathology , Mammary Glands, Animal/pathology , Transcriptome/genetics , Animals , Cattle , Female , Gene Expression Profiling , Insulin Resistance/genetics , Lactation/genetics , Photoperiod , Pregnancy , Risk
2.
PLoS One ; 14(10): e0223368, 2019.
Article in English | MEDLINE | ID: mdl-31600254

ABSTRACT

The objectives of this study were: 1) to classify animals into groups of high and low feed efficiency using two feed efficiency indexes (Residual feed intake (RFI) and residual feed intake and body weight gain (RIG)), and 2) to evaluate if pre-weaning heifer calves divergent for feed efficiency indexes exhibit differences in performance, body measurements, digestibility, energy partitioning, and nitrogen partitioning. A total of 32 Gyr heifer calves were enrolled in a 63-d trial and classified into two feed efficiency (FE) groups based on RFI and RIG (mean ± 0.5 SD). The groups were classified as high efficiency (HE) RFI (HE RFI, n = 9; HE RIG, n = 10), and low efficiency (LE) RFI (LE RFI, n = 10; LE RIG, n = 11). The remaining animals were classified as intermediate (n = 13 (RFI) and n = 11 (RIG)). HE and LE calves had RFI values of-0.052 and 0.049 kg/d (P < 0.05), respectively. The HE RFI group consumed 8.9% less solid diet than the LE RFI group. HE RFI animals exhibited an increased digestibility of crude protein and ether extract and tended to have greater total dry and organic matter digestibility. LE RFI animals had greater gross energy and nitrogen intake, though greater fecal losses resulted in a tendency to reduce energy and nitrogen use efficiency. HE and LE calves had RIG values of 0.080 and -0.077kg/d (P ≤ 0.01), respectively. HE RIG animals exhibited greater average daily gain (9.4%), body weight (BW), and heart girth, though HE RIG group exhibited narrower hip width. HE RIG animals tended to have greater ether extract digestibility but greater methane losses (% of gross energy). HE RFI in pre-weaning heifers seems to be related to differences in digestibility. Divergent animals for RIG during the assessed phase appear to differ in body measurements, which may be related to differences in the composition of the gain.


Subject(s)
Digestion/physiology , Energy Metabolism , Feeding Behavior , Nitrogen/metabolism , Weaning , Animals , Cattle , Diet/veterinary , Hot Temperature , Methane/metabolism , Milk , Weight Gain
SELECTION OF CITATIONS
SEARCH DETAIL
...