Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters











Publication year range
1.
World J Clin Oncol ; 15(4): 496-522, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38689629

ABSTRACT

Endometriosis is an estrogen-dependent inflammatory disease, defined by the presence of functional endometrial tissue outside of the uterine cavity. This disease is one of the main gynecological diseases, affecting around 10%-15% women and girls of reproductive age, being a common gynecologic disorder. Although endometriosis is a benign disease, it shares several characteristics with invasive cancer. Studies support that it has been linked with an increased chance of developing endometrial ovarian cancer, representing an earlier stage of neoplastic processes. This is particularly true for women with clear cell carcinoma, low-grade serous carcinoma and endometrioid. However, the carcinogenic pathways between both pathologies remain poorly understood. Current studies suggest a connection between endometriosis and endometriosis-associated ovarian cancers (EAOCs) via pathways associated with oxidative stress, inflammation, and hyperestrogenism. This article aims to review current data on the molecular events linked to the development of EAOCs from endometriosis, specifically focusing on the complex relationship between the immune response to endometriosis and cancer, including the molecular mechanisms and their ramifications. Examining recent developments in immunotherapy and their potential to boost the effectiveness of future treatments.

2.
World J Gastrointest Oncol ; 16(4): 1134-1153, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38660642

ABSTRACT

Pancreatic cancer (PC) is characterized by its extremely aggressive nature and ranks 14th in the number of new cancer cases worldwide. However, due to its complexity, it ranks 7th in the list of the most lethal cancers worldwide. The pathogenesis of PC involves several complex processes, including familial genetic factors associated with risk factors such as obesity, diabetes mellitus, chronic pancreatitis, and smoking. Mutations in genes such as KRAS, TP53, and SMAD4 are linked to the appearance of malignant cells that generate pancreatic lesions and, consequently, cancer. In this context, some therapies are used for PC, one of which is immunotherapy, which is extremely promising in various other types of cancer but has shown little response in the treatment of PC due to various resistance mechanisms that contribute to a drop in immunotherapy efficiency. It is therefore clear that the tumor microenvironment (TME) has a huge impact on the resistance process, since cellular and non-cellular elements create an immunosuppressive environment, characterized by a dense desmoplastic stroma with cancer-associated fibroblasts, pancreatic stellate cells, extracellular matrix, and immunosuppressive cells. Linked to this are genetic mutations in TP53 and immunosuppressive factors that act on T cells, resulting in a shortage of CD8+ T cells and limited expression of activation markers such as interferon-gamma. In this way, finding new strategies that make it possible to manipulate resistance mechanisms is necessary. Thus, techniques such as the use of TME modulators that block receptors and stromal molecules that generate resistance, the use of genetic manipulation in specific regions, such as microRNAs, the modulation of extrinsic and intrinsic factors associated with T cells, and, above all, therapeutic models that combine these modulation techniques constitute the promising future of PC therapy. Thus, this study aims to elucidate the main mechanisms of resistance to immunotherapy in PC and new ways of manipulating this process, resulting in a more efficient therapy for cancer patients and, consequently, a reduction in the lethality of this aggressive cancer.

3.
World J Gastroenterol ; 29(32): 4851-4859, 2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37701138

ABSTRACT

Marginal zone lymphomas rank as the third most prevalent form of non-Hodgkin B-cell lymphoma, trailing behind diffuse large B-cell lymphoma and follicular lymphoma. Gastric mucosa-associated lymphoid tissue lymphoma (GML) is a low-grade B-cell neoplasia frequently correlated with Helicobacter pylori (H. pylori)-induced chronic gastritis. On the other hand, a specific subset of individuals diagnosed with GML does not exhibit H. pylori infection. In contrast to its H. pylori-positive counterpart, it was previously believed that H. pylori-negative GML was less likely to respond to antimicrobial therapy. Despite this, surprisingly, in-creasing evidence supports that a considerable proportion of patients with H. pylori-negative GML show complete histopathological remission after bacterial eradication therapy. Nonetheless, the precise mechanisms underlying this treatment responsiveness are not yet fully comprehended. In recent years, there has been growing interest in investigating the role of non-H. pylori gastric helicobacters (NHPHs) in the pathogenesis of H. pylori-negative GML. However, additional research is required to establish the causal relationship between NHPHs and GML. In this minireview, we examined the current understanding and proposed prospects on the involvement of NHPHs in H. pylori-negative GML, as well as their potential response to bacterial eradication therapy.


Subject(s)
Gastritis , Intraabdominal Infections , Lymphoma, B-Cell, Marginal Zone , Stomach Neoplasms , Humans , Lymphoma, B-Cell, Marginal Zone/drug therapy , Gastritis/drug therapy
4.
World J Virol ; 12(3): 193-203, 2023 Jun 25.
Article in English | MEDLINE | ID: mdl-37396702

ABSTRACT

The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been a major challenge to be faced in recent years. While adults suffered the highest morbidity and mortality rates of coronavirus disease 2019, children were thought to be exclusively asymptomatic or to present with mild conditions. However, around April 2020, there was an outbreak of a new clinical syndrome related to SARS-CoV-2 in children - multisystemic inflammatory syndrome in children (MIS-C) - which comprises a severe and uncon-trolled hyperinflammatory response with multiorgan involvement. The Centers for Disease Control and Prevention considers a suspected case of MIS-C an individual aged < 21 years presenting with fever, high inflammatory markers levels, and evidence of clinically severe illness, with multisystem (> 2) organ involvement, no alternative plausible diagnoses, and positive for recent SARS-CoV-2 infection. Despite its severity, there are no definitive disease management guidelines for this condition. Conversely, the complex pathogenesis of MIS-C is still not completely understood, although it seems to rely upon immune dysregulation. Hence, in this study, we aim to bring together current evidence regarding the pathogenic mechanisms of MIS-C, clinical picture and management, in order to provide insights for clinical practice and implications for future research directions.

6.
World J Clin Oncol ; 14(4): 138-159, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37124134

ABSTRACT

Glioblastoma remains as the most common and aggressive malignant brain tumor, standing with a poor prognosis and treatment prospective. Despite the aggressive standard care, such as surgical resection and chemoradiation, median survival rates are low. In this regard, immunotherapeutic strategies aim to become more attractive for glioblastoma, considering its recent advances and approaches. In this review, we provide an overview of the current status and progress in immunotherapy for glioblastoma, going through the fundamental knowledge on immune targeting to promising strategies, such as Chimeric antigen receptor T-Cell therapy, immune checkpoint inhibitors, cytokine-based treatment, oncolytic virus and vaccine-based techniques. At last, it is discussed innovative methods to overcome diverse challenges, and future perspectives in this area.

7.
World J Clin Oncol ; 13(11): 866-879, 2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36483973

ABSTRACT

Gastric cancer is the fifth most common malignancy and third leading cancer-related cause of death worldwide. Helicobacter pylori is a Gram-negative bacterium that inhabits the gastric environment of 60.3% of the world's population and represents the main risk factor for the onset of gastric neoplasms. CagA is the most important virulence factor in H. pylori, and is a translocated oncoprotein that induces morphofunctional modifications in gastric epithelial cells and a chronic inflammatory response that increases the risk of developing precancerous lesions. Upon translocation and tyrosine phosphorylation, CagA moves to the cell membrane and acts as a pathological scaffold protein that simultaneously interacts with multiple intracellular signaling pathways, thereby disrupting cell proliferation, differentiation and apoptosis. All these alterations in cell biology increase the risk of damaged cells acquiring pro-oncogenic genetic changes. In this sense, once gastric cancer sets in, its perpetuation is independent of the presence of the oncoprotein, characterizing a "hit-and-run" carcinogenic mechanism. Therefore, this review aims to describe H. pylori- and CagA-related oncogenic mechanisms, to update readers and discuss the novelties and perspectives in this field.

8.
World J Clin Cases ; 10(31): 11283-11291, 2022 Nov 06.
Article in English | MEDLINE | ID: mdl-36387830

ABSTRACT

Helicobacter pylori (H. pylori) is a Gram-negative bacterium that infects about half of the world's population. H. pylori infection prevails by several mechanisms of adaptation of the bacteria and by its virulence factors including the cytotoxin associated antigen A (CagA). CagA is an oncoprotein that is the protagonist of gastric carcinogenesis associated with prolonged H. pylori infection. In this sense, small regulatory RNAs (sRNAs) are important macromolecules capable of inhibiting and activating gene expression. This function allows sRNAs to act in adjusting to unstable environmental conditions and in responding to cellular stresses in bacterial infections. Recent discoveries have shown that nickel-regulated small RNA (NikS) is a post-transcriptional regulator of virulence properties of H. pylori, including the oncoprotein CagA. Notably, high concentrations of nickel cause the reduction of NikS expression and consequently this increases the levels of CagA. In addition, NikS expression appears to be lower in clinical isolates from patients with gastric cancer when compared to patients without. With that in mind, this minireview approaches, in an accessible way, the most important and current aspects about the role of NikS in the control of virulence factors of H. pylori and the potential clinical repercussions of this modulation.

9.
World J Exp Med ; 12(5): 100-103, 2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36196438

ABSTRACT

Qualitative antibody tests are an easy, point-of-care diagnostic method that is useful in diagnosing coronavirus disease 2019, especially in situations where reverse transcription-polymerase chain reaction is negative. However, some factors are able to affect its sensitivity and accuracy, which may contribute to these tests not being used as a first-line diagnostic tool.

10.
World J Virol ; 10(5): 229-255, 2021 Sep 25.
Article in English | MEDLINE | ID: mdl-34631474

ABSTRACT

In view of the advancement in the understanding about the most diverse types of cancer and consequently a relentless search for a cure and increased survival rates of cancer patients, finding a therapy that is able to combat the mechanism of aggression of this disease is extremely important. Thus, oncolytic viruses (OVs) have demonstrated great benefits in the treatment of cancer because it mediates antitumor effects in several ways. Viruses can be used to infect cancer cells, especially over normal cells, to present tumor-associated antigens, to activate "danger signals" that generate a less immune-tolerant tumor microenvironment, and to serve transduction vehicles for expression of inflammatory and immunomodulatory cytokines. The success of therapies using OVs was initially demonstrated by the use of the genetically modified herpes virus, talimogene laherparepvec, for the treatment of melanoma. At this time, several OVs are being studied as a potential treatment for cancer in clinical trials. However, it is necessary to be aware of the safety and possible adverse effects of this therapy; after all, an effective treatment for cancer should promote regression, attack the tumor, and in the meantime induce minimal systemic repercussions. In this manuscript, we will present a current review of the mechanism of action of OVs, main clinical uses, updates, and future perspectives on this treatment.

SELECTION OF CITATIONS
SEARCH DETAIL