Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 6396, 2024 03 16.
Article in English | MEDLINE | ID: mdl-38493223

ABSTRACT

Knowledge about paternal-effect-genes (PEGs) (genes whose expression in the progeny is influenced by paternal factors present in the sperm) in fish is very limited. To explore this issue, we used milt cryopreservation as a specific challenge test for sperm cells, thus enabling selection amidst cryo-sensitivity. We created two groups of Eurasian perch (Perca fluviatilis) as a model - eggs fertilized either with fresh (Fresh group) or cryopreserved (Cryo group) milt from the same male followed by phenotypic-transcriptomic examination of consequences of cryopreservation in obtained progeny (at larval stages). Most of the phenotypical observations were similar in both groups, except the final weight which was higher in the Cryo group. Milt cryopreservation appeared to act as a "positive selection" factor, upregulating most PEGs in the Cryo group. Transcriptomic profile of freshly hatched larvae sourced genes involved in the development of visual perception and we identified them as PEGs. Consequently, larvae from the Cryo group exhibited enhanced eyesight, potentially contributing to more efficient foraging and weight gain compared to the Fresh group. This study unveils, for the first time, the significant influence of the paternal genome on the development of the visual system in fish, highlighting pde6g, opn1lw1, and rbp4l as novel PEGs.


Subject(s)
Perches , Animals , Male , Perches/genetics , Semen , Cryopreservation , Fertilization , Spermatozoa/physiology , Larva
2.
PLoS One ; 14(12): e0226878, 2019.
Article in English | MEDLINE | ID: mdl-31891603

ABSTRACT

Domestication is an evolutionary process during which we expect populations to progressively adapt to an environment controlled by humans. It is accompanied by genetic and presumably epigenetic changes potentially leading to modifications in the transcriptomic profile in various tissues. Reproduction is a key function often affected by this process in numerous species, regardless of the mechanism. The maternal mRNA in fish eggs is crucial for the proper embryogenesis. Our working hypothesis is that modifications of maternal mRNAs may reflect potential genetic and/or epigenetic modifications occurring during domestication and could have consequences during embryogenesis. Consequently, we investigated the trancriptomic profile of unfertilized eggs from two populations of Eurasian perch. These two populations differed by their domestication histories (F1 vs. F7+-at least seven generations of reproduction in captivity) and were genetically differentiated (FST = 0.1055, p<0.05). A broad follow up of the oogenesis progression failed to show significant differences during oogenesis between populations. However, the F1 population spawned earlier with embryos presenting an overall higher survivorship than those from the F7+ population. The transcriptomic profile of unfertilized eggs showed 358 differentially expressed genes between populations. In conclusion, our data suggests that the domestication process may influence the regulation of the maternal transcripts in fish eggs, which could in turn explain differences of developmental success.


Subject(s)
Domestication , Ovum/metabolism , Perches/embryology , Perches/genetics , RNA, Messenger, Stored/genetics , Transcriptome/genetics , Animals , Embryonic Development/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...