Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proteins ; 91(12): 1800-1810, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37622458

ABSTRACT

Ribonucleic acid (RNA) molecules serve as master regulators of cells by encoding their biological function in the ribonucleotide sequence, particularly their ability to interact with other molecules. To understand how RNA molecules perform their biological tasks and to design new sequences with specific functions, it is of great benefit to be able to computationally predict how RNA folds and interacts in the cellular environment. Our workflow for computational modeling of the 3D structures of RNA and its interactions with other molecules uses a set of methods developed in our laboratory, including MeSSPredRNA for predicting canonical and non-canonical base pairs, PARNASSUS for detecting remote homology based on comparisons of sequences and secondary structures, ModeRNA for comparative modeling, the SimRNA family of programs for modeling RNA 3D structure and its complexes with other molecules, and QRNAS for model refinement. In this study, we present the results of testing this workflow in predicting RNA 3D structures in the CASP15 experiment. The overall high score of the computational models predicted by our group demonstrates the robustness of our workflow and its individual components in terms of predicting RNA 3D structures of acceptable quality that are close to the target structures. However, the variance in prediction quality is still quite high, and the results are still too far from the level of protein 3D structure predictions. This exercise led us to consider several improvements, especially to better predict and enforce stacking interactions and non-canonical base pairs.


Subject(s)
RNA , RNA/chemistry , Nucleic Acid Conformation , Models, Molecular , Base Pairing , Computer Simulation
2.
Acta Crystallogr D Struct Biol ; 72(Pt 2): 245-53, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26894672

ABSTRACT

The RNA polymerase of influenza virus consists of three subunits: PA, PB1 and PB2. It uses a unique `cap-snatching' mechanism for the transcription of viral mRNAs. The cap-binding domain of the PB2 subunit (PB2cap) in the viral polymerase binds the cap of a host pre-mRNA molecule, while the endonuclease of the PA subunit cleaves the RNA 10-13 nucleotides downstream from the cap. The capped RNA fragment is then used as the primer for viral mRNA transcription. The structure of PB2cap from influenza virus H1N1 A/California/07/2009 and of its complex with the cap analog m(7)GTP were solved at high resolution. Structural changes are observed in the cap-binding site of this new pandemic influenza virus strain, especially the hydrophobic interactions between the ligand and the target protein. m(7)GTP binds deeper in the pocket than some other virus strains, much deeper than the host cap-binding proteins. Analysis of the new H1N1 structures and comparisons with other structures provide new insights into the design of small-molecule inhibitors that will be effective against multiple strains of both type A and type B influenza viruses.


Subject(s)
Viral Proteins/chemistry , Antiviral Agents/chemistry , Catalytic Domain , Crystallography, X-Ray , Guanosine Triphosphate/chemistry , Hydrogen Bonding , Influenza A Virus, H1N1 Subtype/enzymology , Models, Molecular , RNA Cap Analogs/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...