Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Antiviral Res ; 223: 105839, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38373532

ABSTRACT

Human norovirus (HuNoV) and human rotavirus (HRV) are the leading causes of gastrointestinal diarrhea. There are no approved antivirals and rotavirus vaccines are insufficient to cease HRV associated mortality. Furthermore, treatment of chronically infected immunocompromised patients is limited to off-label compassionate use of repurposed antivirals with limited efficacy, highlighting the urgent need of potent and specific antivirals for HuNoV and HRV. Recently, a major breakthrough in the in vitro cultivation of HuNoV and HRV derived from the use of human intestinal enteroids (HIEs). The replication of multiple circulating HuNoV and HRV genotypes can finally be studied and both in the same non-transformed and physiologically relevant model. Activity of previously described anti-norovirus or anti-rotavirus drugs, such as 2'-C-methylcytidine (2CMC), 7-deaza-2'-C-methyladenosine (7DMA), nitazoxanide, favipiravir and dasabuvir, was assessed against clinically relevant human genotypes using 3D-HIEs. 2CMC showed the best activity against HuNoV GII.4, while 7DMA was the most potent antiviral against HRV. We identified the anti-norovirus and -rotavirus activity of molnupiravir and its active metabolite, N4-hydroxycytidine (NHC), a broad-spectrum antiviral used to treat coronavirus disease 2019 (COVID-19). Molnupiravir and NHC inhibit HuNoV GII.4, HRV G1P[8], G2P[4] and G4P[6] in 3D-HIEs with high selectivity and show a potency comparable to 2CMC against HuNoV. Moreover, molnupiravir and NHC block HRV viroplasm formation, but do not alter its size or subcellular localization. Taken together, molnupiravir inhibits both HuNoV and HRV replication, suggesting that the drug could be a candidate for the treatment of patients chronically infected with either one of these diarrhea causing viruses.


Subject(s)
Cytidine/analogs & derivatives , Hydroxylamines , Norovirus , Rotavirus , Humans , Diarrhea/drug therapy , Antiviral Agents/pharmacology
2.
Clin Immunol ; 259: 109901, 2024 02.
Article in English | MEDLINE | ID: mdl-38218209

ABSTRACT

Chronic human norovirus (HuNoV) infections in immunocompromised patients result in severe disease, yet approved antivirals are lacking. RNA-dependent RNA polymerase (RdRp) inhibitors inducing viral mutagenesis display broad-spectrum in vitro antiviral activity, but clinical efficacy in HuNoV infections is anecdotal and the potential emergence of drug-resistant variants is concerning. Upon favipiravir (and nitazoxanide) treatment of four immunocompromised patients with life-threatening HuNoV infections, viral whole-genome sequencing showed accumulation of favipiravir-induced mutations which coincided with clinical improvement although treatment failed to clear HuNoV. Infection of zebrafish larvae demonstrated drug-associated loss of viral infectivity and favipiravir treatment showed efficacy despite occurrence of RdRp variants potentially causing favipiravir resistance. This indicates that within-host resistance evolution did not reverse loss of viral fitness caused by genome-wide accumulation of sequence changes. This off-label approach supports the use of mutagenic antivirals for treating prolonged RNA viral infections and further informs the debate surrounding their impact on virus evolution.


Subject(s)
Amides , Norovirus , Pyrazines , Viruses , Animals , Humans , Norovirus/genetics , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Zebrafish , Mutagenesis , RNA-Dependent RNA Polymerase/genetics , Immunocompromised Host
3.
Lancet Microbe ; 5(3): e247-e260, 2024 03.
Article in English | MEDLINE | ID: mdl-38280387

ABSTRACT

BACKGROUND: COVID-19-associated pulmonary aspergillosis (CAPA) is a severe superinfection with the fungus Aspergillus affecting patients who are critically ill with COVID-19. The pathophysiology and the role of neutrophil extracellular traps (NETs) in this infection are largely unknown. We aimed to characterise the immune profile, with a focus on neutrophils and NET concentrations, of critically ill patients with COVID-19, with or without CAPA. METHODS: We conducted a single-centre, retrospective, observational study in two patient cohorts, both recruited at University Hospitals Leuven, Belgium. We included adults aged 18 years or older who were admitted to the intensive care unit because of COVID-19 between March 31, 2020, and May 18, 2021, and who were included in the previous Contagious trial (NCT04327570). We investigated the immune cellular landscape of CAPA versus COVID-19 only by performing single-cell RNA sequencing (scRNA-seq) on bronchoalveolar lavage fluid. Bronchoalveolar lavage immune cell fractions were compared between patients with CAPA and patients with COVID-19 only. Additionally, we determined lower respiratory tract NET concentrations using biochemical assays in patients aged 18 years and older who were admitted to the intensive care unit because of severe COVID-19 between March 15, 2020, and Dec 31, 2021, for whom bronchoalveolar lavage was available in the hospital biobank. Bronchoalveolar lavage NET concentrations were compared between patients with CAPA and patients with COVID-19 only and integrated with existing data on immune mediators in bronchoalveolar lavage and 90-day mortality. FINDINGS: We performed scRNA-seq of bronchoalveolar lavage on 43 samples from 39 patients, of whom 36 patients (30 male and six female; 14 with CAPA) were included in downstream analyses. We performed bronchoalveolar lavage NET analyses in 59 patients (46 male and 13 female), of whom 26 had CAPA. By scRNA-seq, patients with CAPA had significantly lower neutrophil fractions than patients with COVID-19 only (16% vs 33%; p=0·0020). The remaining neutrophils in patients with CAPA preferentially followed a hybrid maturation trajectory characterised by expression of genes linked to antigen presentation, with enhanced transcription of antifungal effector pathways. Patients with CAPA also showed depletion of mucosal-associated invariant T cells, reduced T helper 1 and T helper 17 differentiation, and transcriptional defects in specific aspects of antifungal immunity in macrophages and monocytes. We observed increased formation of NETs in patients with CAPA compared with patients with COVID-19 only (DNA complexed with citrullinated histone H3 median 15 898 ng/mL [IQR 4588-86 419] vs 7062 ng/mL [775-14 088]; p=0·042), thereby explaining decreased neutrophil fractions by scRNA-seq. Low bronchoalveolar lavage NET concentrations were associated with increased 90-day mortality in patients with CAPA. INTERPRETATION: Qualitative and quantitative disturbances in monocyte, macrophage, B-cell, and T-cell populations could predispose patients with severe COVID-19 to develop CAPA. Hybrid neutrophils form a specialised response to CAPA, and an adequate neutrophil response to CAPA is a major determinant for survival in these patients. Therefore, measuring bronchoalveolar lavage NETs could have diagnostic and prognostic value in patients with CAPA. Clinicians should be wary of aspergillosis when using immunomodulatory therapy that might inhibit NETosis to treat patients with severe COVID-19. FUNDING: Research Foundation Flanders, KU Leuven, UZ Leuven, VIB, the Fundação para a Ciência e a Tecnologia, the European Regional Development Fund, la Caixa Foundation, the Flemish Government, and Horizon 2020.


Subject(s)
COVID-19 , Extracellular Traps , Pulmonary Aspergillosis , Adult , Humans , Female , Male , Retrospective Studies , Antifungal Agents , Critical Illness , COVID-19/complications , Respiratory System , Sequence Analysis, RNA
4.
Nat Commun ; 15(1): 42, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38168091

ABSTRACT

To curb viral epidemics and pandemics, antiviral drugs are needed with activity against entire genera or families of viruses. Here, we develop a cell-based multiplex antiviral assay for high-throughput screening against multiple viruses at once, as demonstrated by using three distantly related orthoflaviviruses: dengue, Japanese encephalitis and yellow fever virus. Each virus is tagged with a distinct fluorescent protein, enabling individual monitoring in cell culture through high-content imaging. Specific antisera and small-molecule inhibitors are employed to validate that multiplexing approach yields comparable inhibition profiles to single-virus infection assays. To facilitate downstream analysis, a kernel is developed to deconvolute and reduce the multidimensional quantitative data to three cartesian coordinates. The methodology is applicable to viruses from different families as exemplified by co-infections with chikungunya, parainfluenza and Bunyamwera viruses. The multiplex approach is expected to facilitate the discovery of broader-spectrum antivirals, as shown in a pilot screen of approximately 1200 drug-like small-molecules.


Subject(s)
Virus Diseases , Viruses , Humans , Antiviral Agents/pharmacology , High-Throughput Screening Assays/methods , Cell Culture Techniques , Virus Replication
5.
Microbiol Spectr ; : e0519522, 2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37540021

ABSTRACT

Aedes aegypti mosquitoes can transmit several arboviruses, including chikungunya virus (CHIKV), dengue virus (DENV), and Zika virus (ZIKV). When blood-feeding on a virus-infected human, the mosquito ingests the virus into the midgut (stomach), where it replicates and must overcome the midgut barrier to disseminate to other organs and ultimately be transmitted via the saliva. Current tools to study mosquito-borne viruses (MBVs) include 2D-cell culture systems and in vivo mosquito infection models, which offer great advantages, yet have some limitations. Here, we describe a long-term ex vivo culture of Ae. aegypti guts. Cultured guts were metabolically active for 7 d in a 96-well plate at 28°C and were permissive to ZIKV, DENV, Ross River virus, and CHIKV. Ex vivo guts from Culex pipiens mosquitoes were found to be permissive to Usutu virus. Immunofluorescence staining confirmed viral protein synthesis in CHIKV-infected guts of Ae. aegypti. Furthermore, fluorescence microscopy revealed replication and spread of a reporter DENV in specific regions of the midgut. In addition, two known antiviral molecules, ß-d-N4-hydroxycytidine and 7-deaza-2'-C-methyladenosine, were able to inhibit CHIKV and ZIKV replication, respectively, in the ex vivo model. Together, our results show that ex vivo guts can be efficiently infected with mosquito-borne alpha- and flaviviruses and employed to evaluate antiviral drugs. Furthermore, the setup can be extended to other mosquito species. Ex vivo gut cultures could thus be a new model to study MBVs, offering the advantage of reduced biosafety measures compared to infecting living mosquitoes. IMPORTANCE Mosquito-borne viruses (MBVs) are a significant global health threat since they can cause severe diseases in humans, such as hemorrhagic fever, encephalitis, and chronic arthritis. MBVs rely on the mosquito vector to infect new hosts and perpetuate virus transmission. No therapeutics are currently available. The study of arbovirus infection in the mosquito vector can greatly contribute to elucidating strategies for controlling arbovirus transmission. This work investigated the infection of guts from Aedes aegypti mosquitoes in an ex vivo platform. We found several MBVs capable of replicating in the gut tissue, including viruses of major health importance, such as dengue, chikungunya, and Zika viruses. In addition, antiviral compounds reduced arbovirus infection in the cultured gut tissue. Overall, the gut model emerges as a useful tool for diverse applications such as studying tissue-specific responses to virus infection and screening potential anti-arboviral molecules.

6.
Antiviral Res ; 217: 105678, 2023 09.
Article in English | MEDLINE | ID: mdl-37494979

ABSTRACT

The 36th International Conference on Antiviral Research (ICAR), sponsored by the International Society for Antiviral Research (ISAR), was held March 13-17, 2023, in Lyon, France, and concurrently through an interactive remote meeting platform. Here we provide a report summarizing the presentations at the 36th ICAR, including the ISAR speaker awards. We also detail special events, sessions, and additional awards conferred at the meeting. ICAR returned to in-person meetings in 2022, convening in Seattle, WA, USA. The 36th ICAR is the first in-person meeting of the society in Europe since the beginning of the COVID-19 pandemic, which restricted most events to virtual attendance to help mitigate the spread and subsequent public health impact of SARS-CoV-2. An exceptionally high number of registrants and record attendance at this year's ICAR, along with a vast array of demonstrable expertise in a variety of antiviral research-related fields, reflected a strong and growing antiviral research community committed to improving health outcomes from viral diseases, including SARS-CoV-2, and to future pandemic preparedness. This report highlights the breadth of expertise, quality of research, and notable advancements that were contributed by members of ISAR and other participants at the meeting. ICAR aims to continue to provide a platform for sharing information, fostering collaborations, and supporting trainees in the field of antiviral research. The 37th ICAR will be held in Gold Coast, Australia, May 20-24, 2024.


Subject(s)
Antiviral Agents , COVID-19 , Humans , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Iron-Dextran Complex , Pandemics , SARS-CoV-2
7.
Cells ; 12(8)2023 04 12.
Article in English | MEDLINE | ID: mdl-37190047

ABSTRACT

Enteroviruses are a leading cause of upper respiratory tract, gastrointestinal, and neurological infections. Management of enterovirus-related diseases has been hindered by the lack of specific antiviral treatment. The pre-clinical and clinical development of such antivirals has been challenging, calling for novel model systems and strategies to identify suitable pre-clinical candidates. Organoids represent a new and outstanding opportunity to test antiviral agents in a more physiologically relevant system. However, dedicated studies addressing the validation and direct comparison of organoids versus commonly used cell lines are lacking. Here, we described the use of human small intestinal organoids (HIOs) as a model to study antiviral treatment against human enterovirus 71 (EV-A71) infection and compared this model to EV-A71-infected RD cells. We used reference antiviral compounds such as enviroxime, rupintrivir, and 2'-C-methylcytidine (2'CMC) to assess their effects on cell viability, virus-induced cytopathic effect, and viral RNA yield in EV-A71-infected HIOs and cell line. The results indicated a difference in the activity of the tested compounds between the two models, with HIOs being more sensitive to infection and drug treatment. In conclusion, the outcome reveals the value added by using the organoid model in virus and antiviral studies.


Subject(s)
Enterovirus A, Human , Enterovirus Infections , Enterovirus , Humans , Antiviral Agents/pharmacology , Enterovirus A, Human/physiology , Enterovirus Infections/drug therapy , Organoids
9.
J Virol ; 96(22): e0085522, 2022 11 23.
Article in English | MEDLINE | ID: mdl-36342297

ABSTRACT

Human norovirus (HNoV) accounts for one-fifth of all acute viral gastroenteritis worldwide and an economic burden of ~$60 billion globally. The lack of treatment options against HNoV is in part due to the lack of cultivation systems. Recently, a model of infection in biopsy-derived human intestinal enteroids (HIE) has been described: 3D-HIE are first dispersed in 2D-monolayers and differentiated prior to infection, resulting in a labor-intensive, time-consuming procedure. Here, we present an alternative protocol for HNoV infection of 3D-HIE. We found that 3D-HIE differentiated as efficiently as 2D-monolayers. In addition, immunofluorescence-based quantification of UEA-1, a lectin that stains the villus brush border, revealed that ~80% of differentiated 3D-HIE spontaneously undergo polarity inversion, allowing for viral infection without the need for microinjection. Infection with HNoV GII.4-positive stool samples attained a fold-increase over inoculum of ~2 Log10 at 2 days postinfection or up to 3.5 Log10 when ruxolitinib, a JAK1/2-inhibitor, was added. Treatment of GII.4-infected 3D-HIE with the polymerase inhibitor 2'-C-Methylcytidine (2CMC) and other antivirals showed a reduction in viral infection, suggesting that 3D-HIE are an excellent platform to test anti-infectives. The transcriptional host response to HNoV was then investigated by RNA sequencing in infected versus uninfected 3D-HIE in the presence of ruxolitinib to focus on virus-associated signatures while limiting interferon-stimulated gene signatures. The analysis revealed upregulated hormone and neurotransmitter signal transduction pathways and downregulated glycolysis and hypoxia-response pathways upon HNoV infection. Overall, 3D-HIE have proven to be a highly robust model to study HNoV infection, screen antivirals, and to investigate the host response to HNoV infection. IMPORTANCE The human norovirus (HNoV) clinical and socio-economic impact calls for immediate action in the development of anti-infectives. Physiologically relevant in vitro models are hence needed to study HNoV biology, tropism, and mechanisms of viral-associated disease, and also as a platform to identify antiviral agents. Biopsy-derived human intestinal enteroids are a biomimetic of the intestinal epithelium and were recently described as a model that supports HNoV infection. However, the established protocol is time-consuming and labor-intensive. Therefore, we sought to develop a simplified and robust alternative model of infection in 3D enteroids that undergoes differentiation and spontaneous polarity inversion. Advantages of this model are the shorter experimental time, better infection yield, and spatial integrity of the intestinal epithelium. This model is potentially suitable for the study of other pathogens that infect intestinal cells from the apical surface but also for unraveling the interactions between intestinal epithelium and indigenous bacteria of the human microbiome.


Subject(s)
Caliciviridae Infections , Gastroenteritis , Norovirus , Humans , Norovirus/physiology , Pyrazoles , Antiviral Agents/pharmacology
10.
Microbiol Spectr ; 10(6): e0315722, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36314930

ABSTRACT

Human norovirus (HuNoV) is the major agent for viral gastroenteritis, causing >700 million infections yearly. Fucose-containing carbohydrates named histo-blood group antigens (HBGAs) are known (co)receptors for HuNoV. Moreover, bacteria of the gut microbiota expressing HBGA-like structures have shown an enhancing effect on HuNoV replication in an in vitro model. Here, we studied the role of HBGAs and the host microbiota during HuNoV infection in zebrafish larvae. Using whole-mount immunohistochemistry, we visualized the fucose expression in the zebrafish gut for the HBGA Lewis X [LeX, α(1,3)-fucose] and core fucose [α(1,6)-fucose]. Costaining of HuNoV-infected larvae proved colocalization of LeX and to a lower extent core fucose with the viral capsid protein VP1, indicating the presence of fucose residues on infected cells. Upon blocking of fucose expression by a fluorinated fucose analogue, HuNoV replication was strongly reduced. Furthermore, by comparing HuNoV replication in conventional and germfree zebrafish larvae, we found that the natural zebrafish microbiome does not have an effect on HuNoV replication, contrary to earlier reports about the human gut microbiome. Interestingly, monoassociation with the HBGA-expressing Enterobacter cloacae resulted in a minor decrease in HuNoV replication, which was not triggered by a stronger innate immune response. Overall, we show here that fucose has an essential role for HuNoV infection in zebrafish larvae, as in the human host, but their natural gut microbiome does not affect viral replication. IMPORTANCE Despite causing over 700 million infections yearly, many gaps remain in the knowledge of human norovirus (HuNoV) biology due to an historical lack of efficient cultivation systems. Fucose-containing carbohydrate structures, named histo-blood group antigens, are known to be important (co)receptors for viral entry in humans, while the natural gut microbiota is suggested to enhance viral replication. This study shows a conserved mechanism of entry for HuNoV in the novel zebrafish infection model, highlighting the pivotal opportunity this model represents to study entry mechanisms and identify the cellular receptor of HuNoV. Our results shed light on the interaction of HuNoV with the zebrafish microbiota, contributing to the understanding of the interplay between gut microbiota and enteric viruses. The ease of generating germfree animals that can be colonized with human gut bacteria is an additional advantage of using zebrafish larvae in virology. This small animal model constitutes an innovative alternative to high-severity animal models.


Subject(s)
Blood Group Antigens , Microbiota , Norovirus , Animals , Humans , Zebrafish , Fucose/metabolism , Blood Group Antigens/metabolism , Larva
11.
Antiviral Res ; 202: 105311, 2022 06.
Article in English | MEDLINE | ID: mdl-35390430

ABSTRACT

Nelfinavir is an HIV protease inhibitor that has been widely prescribed as a component of highly active antiretroviral therapy, and has been reported to exert in vitro antiviral activity against SARS-CoV-2. We here assessed the effect of Nelfinavir in a SARS-CoV-2 infection model in hamsters. Despite the fact that Nelfinavir, [50 mg/kg twice daily (BID) for four consecutive days], did not reduce viral RNA load and infectious virus titres in the lung of infected animals, treatment resulted in a substantial improvement of SARS-CoV-2-induced lung pathology. This was accompanied by a dense infiltration of neutrophils in the lung interstitium which was similarly observed in non-infected hamsters. Nelfinavir resulted also in a marked increase in activated neutrophils in the blood, as observed in non-infected animals. Although Nelfinavir treatment did not alter the expression of chemoattractant receptors or adhesion molecules on human neutrophils, in vitro migration of human neutrophils to the major human neutrophil attractant CXCL8 was augmented by this protease inhibitor. Nelfinavir appears to induce an immunomodulatory effect associated with increasing neutrophil number and functionality, which may be linked to the marked improvement in SARS-CoV-2 lung pathology independent of its lack of antiviral activity. Since Nelfinavir is no longer used for the treatment of HIV, we studied the effect of two other HIV protease inhibitors, namely the combination Lopinavir/Ritonavir (Kaletra™) in this model. This combination resulted in a similar protective effect as Nelfinavir against SARS-CoV2 induced lung pathology in hamsters.


Subject(s)
COVID-19 Drug Treatment , HIV Infections , HIV Protease Inhibitors , Animals , Cricetinae , HIV Infections/drug therapy , HIV Protease Inhibitors/pharmacology , HIV Protease Inhibitors/therapeutic use , Lopinavir/pharmacology , Lopinavir/therapeutic use , Lung , Mesocricetus , Nelfinavir/pharmacology , Nelfinavir/therapeutic use , RNA, Viral , Ritonavir/therapeutic use , SARS-CoV-2
12.
J Virol ; 96(6): e0206521, 2022 03 23.
Article in English | MEDLINE | ID: mdl-35107369

ABSTRACT

Recent evidence indicates that viral components of the microbiota can contribute to intestinal homeostasis and protection from local inflammatory or infectious insults. However, host-derived mechanisms that regulate the virome remain largely unknown. In this study, we used colonization with the model commensal murine norovirus (MNV; strain CR6) to interrogate host-directed mechanisms of viral regulation, and we show that STAT1 is a central coordinator of both viral replication and antiviral T cell responses. In addition to restricting CR6 replication to the intestinal tract, we show that STAT1 regulates antiviral CD4+ and CD8+ T cell responses and prevents systemic viral-induced tissue damage and disease. Despite altered T cell responses that resemble those that mediate lethal immunopathology in systemic viral infections in STAT1-deficient mice, depletion of adaptive immune cells and their associated effector functions had no effect on CR6-induced disease. However, therapeutic administration of an antiviral compound limited viral replication, preventing virus-induced tissue damage and death without impacting the generation of inflammatory antiviral T cell responses. Collectively, our data show that STAT1 restricts MNV CR6 replication within the intestinal mucosa and that uncontrolled viral replication mediates disease rather than the concomitant development of dysregulated antiviral T cell responses in STAT1-deficient mice. IMPORTANCE The intestinal microbiota is a collection of bacteria, archaea, fungi, and viruses that colonize the mammalian gut. Coevolution of the host and microbiota has required development of immunological tolerance to prevent ongoing inflammatory responses against intestinal microbes. Breakdown of tolerance to bacterial components of the microbiota can contribute to immune activation and inflammatory disease. However, the mechanisms that are necessary to maintain tolerance to viral components of the microbiome, and the consequences of loss of tolerance, are less well understood. Here, we show that STAT1 is integral for preventing escape of a commensal-like virus, murine norovirus CR6 (MNV CR6), from the gut and that in the absence of STAT1, mice succumb to infection-induced disease. In contrast to the case with other systemic viral infections, mortality of STAT1-deficient mice is not driven by immune-mediated pathology. Our data demonstrate the importance of host-mediated geographical restriction of commensal-like viruses.


Subject(s)
Caliciviridae Infections , Norovirus , STAT1 Transcription Factor , T-Lymphocytes , Virus Replication , Animals , Caliciviridae Infections/mortality , Caliciviridae Infections/physiopathology , Intestinal Mucosa/virology , Mice , Norovirus/physiology , STAT1 Transcription Factor/deficiency , STAT1 Transcription Factor/genetics , T-Lymphocytes/immunology , T-Lymphocytes/virology
13.
Viruses ; 15(1)2022 12 27.
Article in English | MEDLINE | ID: mdl-36680114

ABSTRACT

Human norovirus is the first cause of foodborne disease worldwide, leading to extensive outbreaks of acute gastroenteritis, and causing around 200,000 children to die annually in developing countries. No specific vaccines or antiviral agents are currently available, with therapeutic options limited to supportive care to prevent dehydration. The infection can become severe and lead to life-threatening complications in young children, the elderly and immunocompromised individuals, leading to a clear need for antiviral agents, to be used as treatments and as prophylactic measures in case of outbreaks. Due to the key role played by the viral RNA-dependent RNA polymerase (RdRp) in the virus life cycle, this enzyme is a promising target for antiviral drug discovery. In previous studies, following in silico investigations, we identified different small-molecule inhibitors of this enzyme. In this study, we rationally modified five identified scaffolds, to further explore structure-activity relationships, and to enhance binding to the RdRp. The newly designed compounds were synthesized according to multiple-step synthetic routes and evaluated for their inhibition of the enzyme in vitro. New inhibitors with low micromolar inhibitory activity of the RdRp were identified, which provide a promising basis for further hit-to-lead optimization.


Subject(s)
Antiviral Agents , Enzyme Inhibitors , Norovirus , Humans , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Norovirus/drug effects , Norovirus/enzymology , RNA-Dependent RNA Polymerase/antagonists & inhibitors
14.
Sci Transl Med ; 13(621): eabi7826, 2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34609205

ABSTRACT

Broadly neutralizing antibodies are an important treatment for individuals with coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Antibody-based therapeutics are also essential for pandemic preparedness against future Sarbecovirus outbreaks. Camelid-derived single domain antibodies (VHHs) exhibit potent antimicrobial activity and are being developed as SARS-CoV-2­neutralizing antibody-like therapeutics. Here, we identified VHHs that neutralize both SARS-CoV-1 and SARS-CoV-2, including now circulating variants. We observed that the VHHs bound to a highly conserved epitope in the receptor binding domain of the viral spike protein that is difficult to access for human antibodies. Structure-guided molecular modeling, combined with rapid yeast-based prototyping, resulted in an affinity enhanced VHH-human immunoglobulin G1 Fc fusion molecule with subnanomolar neutralizing activity. This VHH-Fc fusion protein, produced in and purified from cultured Chinese hamster ovary cells, controlled SARS-CoV-2 replication in prophylactic and therapeutic settings in mice expressing human angiotensin converting enzyme 2 and in hamsters infected with SARS-CoV-2. These data led to affinity-enhanced selection of the VHH, XVR011, a stable anti­COVID-19 biologic that is now being evaluated in the clinic.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Animals , Antibodies, Neutralizing , Antibodies, Viral , Humans , Models, Animal , SARS-CoV-2
15.
Pharmaceuticals (Basel) ; 14(10)2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34681230

ABSTRACT

Human noroviruses (HuNoVs) are the most common cause of viral gastroenteritis resulting in ~219,000 deaths annually and a societal cost of ~USD60 billion. There are no antivirals or vaccines available to treat and/or prevent HuNoV. In this study, we performed a large-scale phenotypical antiviral screening using the mouse norovirus (MNV), which included ~1000 drug-like small molecules from the Drug Design and Synthesis Centre (Sapienza University, Rome). Compound 3-((3,5-dimethylphenyl)sulfonyl)-5-chloroindole-N-(phenylmethanol-4-yl)-2.carboxamide (compound 1) was identified as an inhibitor of MNV replication with an EC50 of 0.5 ± 0.1 µM. A series of 10 analogs were synthesized of which compound 6 showed an improved potency/selectivity (EC50 0.2 ± 0.1 µM) against MNV; good activity was also observed against the HuNoV GI replicon (EC50 1.2 ± 0.6 µM). Time-of-drug-addition studies revealed that analog 6 acts at a time point that coincides with the onset of viral RNA replication. After six months of selective pressure, two compound 6res variants were independently selected, both harboring one mutation in VPg and three mutations in the RdRp. After reverse engineering S131T and Y154F as single mutations into the MNV backbone, we did not find a markedly compound 6res phenotype. In this study, we present a class of novel norovirus inhibitors with a high barrier to resistance and in vitro antiviral activity.

16.
Antivir Chem Chemother ; 29: 20402066211025175, 2021.
Article in English | MEDLINE | ID: mdl-34525875

ABSTRACT

Human norovirus is the main cause of viral gastroenteritis, resulting annually in ∼ 700 million infections and 200,000 deaths, of whom most are children <5 years. Mouse norovirus-infected macrophages are the most widely used in vitro system to screen and characterize the antiviral effect of norovirus-targeting small molecules. We have previously established antiviral assays using this system, identified novel inhibitors and performed additional studies in order to have a first insight into their mechanism of action. After the identification of novel small molecules with anti-norovirus activity (part 1 of this protocol), we here describe the logical next step which entails the generation of early information of their mode of action. This information together with a continuous improvement of the potency of compounds will contribute to the optimization of a compound class towards in vivo efficacy and a successful preclinical development.


Subject(s)
Caliciviridae Infections , Norovirus , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Caliciviridae Infections/drug therapy , Cell Culture Techniques , Mice , Virus Replication
17.
Microorganisms ; 9(9)2021 Aug 24.
Article in English | MEDLINE | ID: mdl-34576691

ABSTRACT

Human norovirus is the leading cause of acute gastroenteritis worldwide, affecting every year 685 million people. Norovirus outbreaks are associated with very significant economic losses, with an estimated societal cost of 60 billion USD per year. Despite this, no therapeutic options or vaccines are currently available to treat or prevent this infection. An antiviral therapy that can be used as treatment and as a prophylactic measure in the case of outbreaks is urgently needed. We previously described the computer-aided design and synthesis of novel small-molecule agents able to inhibit the replication of human norovirus in cell-based systems. These compounds are non-nucleoside inhibitors of the viral polymerase and are characterized by a terminal para-substituted phenyl group connected to a central phenyl ring by an amide-thioamide linker, and a terminal thiophene ring. Here we describe new modifications of these scaffolds focused on exploring the role of the substituent at the para position of the terminal phenyl ring and on removing the thioamide portion of the amide-thioamide linker, to further explore structure-activity relationships (SARs) and improve antiviral properties. According to three to four-step synthetic routes, we prepared thirty novel compounds, which were then evaluated against the replication of both murine (MNV) and human (HuNoV) norovirus in cells. Derivatives in which the terminal phenyl group has been replaced by an unsubstituted benzoxazole or indole, and the thioamide component of the amide-thioamide linker has been removed, showed promising results in inhibiting HuNoV replication at low micromolar concentrations. Particularly, compound 28 was found to have an EC50 against HuNoV of 0.9 µM. Although the most active novel derivatives were also associated with an increased cytotoxicity in the human cell line, these compounds represent a very promising starting point for the development of new analogues with reduced cytotoxicity and improved selectivity indexes. In addition, the experimental biological data have been used to create an initial 3D quantitative structure-activity relationship model, which could be used to guide the future design of novel potential anti-norovirus agents.

18.
Viruses ; 13(9)2021 09 16.
Article in English | MEDLINE | ID: mdl-34578432

ABSTRACT

Human noroviruses (HuNoVs) are the most common cause of viral gastroenteritis resulting annually in ~219,000 deaths and a societal cost of ~USD 60 billion, and no antivirals or vaccines are available. Here, we assess the anti-norovirus activity of new peptidomimetic aldehydes related to the protease inhibitor rupintrivir. The early hit compound 4 inhibited the replication of murine norovirus (MNV) and the HuNoV GI.1 replicon in vitro (EC50 ~1 µM) and swiftly cleared the HuNoV GI.1 replicon from the cells. Compound 4 still inhibits the proteolytic activity. We selected a resistant GI.1 replicon, with a mutation (I109V) in a highly conserved region of the viral protease, conferring a low yield of resistance against compound 4 and rupintrivir. After testing new derivatives, compound 10d was the most potent (EC50 nanomolar range). Molecular docking indicated that the aldehyde group of compounds 4 and 10d bind with Cys139 in the HuNoV 3CL protease by a covalent linkage. Finally, compound 10d inhibited the replication of HuNoV GII.4 in infected zebrafish larvae, and PK studies in mice showed an adequate profile.


Subject(s)
Caliciviridae Infections/drug therapy , Norovirus/drug effects , Viral Protease Inhibitors/pharmacology , Animals , Caliciviridae Infections/virology , Cell Line , Cytopathogenic Effect, Viral/drug effects , Drug Resistance, Viral , Isoxazoles/pharmacology , Microbial Sensitivity Tests , Molecular Docking Simulation , Mutation , Norovirus/enzymology , Norovirus/genetics , Norovirus/physiology , Peptide Hydrolases/genetics , Peptide Hydrolases/metabolism , Phenylalanine/analogs & derivatives , Phenylalanine/pharmacology , Pyrrolidinones/pharmacology , RNA, Viral/metabolism , Replicon , Small Molecule Libraries , Valine/analogs & derivatives , Valine/pharmacology , Viral Protease Inhibitors/chemistry , Viral Protease Inhibitors/pharmacokinetics , Virus Replication/drug effects , Zebrafish/virology
19.
Antivir Chem Chemother ; 29: 20402066211033478, 2021.
Article in English | MEDLINE | ID: mdl-34378414

ABSTRACT

Many species of the order Bunyavirales contain potentially fatal viruses that lack effective medical countermeasures and are therefore collectively a major public health threat. Here, we describe a cell-based assay using Bunyamwera virus (BUNV)-mCherry to identify and characterize new antiviral molecules against bunyaviruses. BUNV is the type species for the genus Orthobunyavirus and has been reported to cause mild symptoms in humans, such as fever, joint pain, and rash. One major benefit of using our fluorescence-based assay over classical CPE-based assays is the fact that the antiviral effect of the tested compounds and their effect on the cell viability can be determined within the same assay well. For that reason, this type of assay could significantly advance our preclinical efforts towards finding new antiviral molecules against bunyaviruses.


Subject(s)
Bunyamwera virus , Orthobunyavirus , Antiviral Agents/pharmacology , Humans , Viral Proteins
20.
Microorganisms ; 9(8)2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34442677

ABSTRACT

Acute gastroenteritis caused by virus has a major impact on public health worldwide in terms of morbidity, mortality, and economic burden. The main culprits are rotaviruses, noroviruses, sapoviruses, astroviruses, and enteric adenoviruses. Currently, there are no antiviral drugs available for the prevention or treatment of viral gastroenteritis. Here, we describe the antivirals that were identified as having in vitro and/or in vivo activity against these viruses, originating from in silico design or library screening, natural sources or being repurposed drugs. We also highlight recent advances in model systems available for this (hard to cultivate) group of viruses, such as organoid technologies, and that will facilitate antiviral studies as well as fill some of current knowledge gaps that hamper the development of highly efficient therapies against gastroenteric viruses.

SELECTION OF CITATIONS
SEARCH DETAIL
...