Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 242: 120245, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37356157

ABSTRACT

There have been significant advances in the use of biological and physical selectors for the intensification of continuously flowing biological wastewater treatment (WWT) processes. Biological selection allows for the development of large biological aggregates (e.g., mobile biofilm, aerobic granules, and densified biological flocs). Physical selection controls the solids residence times of large biological aggregates and ordinary biological flocs, and is usually accomplished using screens or hydrocyclones. Large biological aggregates can facilitate different biological transformations in a single reactor and enhance liquid and solids separation. Continuous-flow WWT processes incorporating biological and physical selectors offer benefits that can include reduced footprint, lower costs, and improved WWT process performance. Thus, it is expected that both interest in and application of these processes will increase significantly in the future. This review provides a comprehensive summary of biological and physical selectors and their design and operation.

2.
Water Sci Technol ; 86(1): 110-127, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35838286

ABSTRACT

Conventional activated sludge (CAS) and densified sludge obtained using hydro-cyclone selective wasting were compared at a full-scale water resources recovery facility. The densified tested sludge, containing around 30-50% of aerobic granules, showed enhanced settleability with low and stable sludge volume index (SVI) compared to CAS, which suffered recurrent filamentous bulking. Further in-depth batch settling tests were carried out using a 40 cm diameter column fitted with ultrasonic transducers to monitor both sludge blanket height and vertical velocity profiles. Hindered settling and compression parameters were calibrated from the experiment for latter modelling use. Test sludge displayed more than doubled settling velocities compared to CAS, with hindered settling velocities remaining >3 m·h-1 even at high solids concentrations of 6.85 g·L-1. The compression regime was attained at much higher critical concentration for the test sludge. It also displayed enhanced thickening properties, with concentrations obtained after 30 min of settling being 20.9 and 8.5 g·L-1 respectively for test and control sludge. This allows for a substantial reduction of recirculation rates in practice. These results open perspectives in optimizing existing plant operation as well as clarifier design and modelling using densified sludge.


Subject(s)
Sewage , Waste Disposal, Fluid , Bioreactors , Calibration , Waste Disposal, Fluid/methods
3.
Water Environ Res ; 94(1): e1664, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34806253

ABSTRACT

Full-scale demonstration of activated sludge conversion into a granule-floc hybrid process was implemented in Dijon (France) water resource recovery facility (WRRF). Biomass densification was achieved based on external gravimetric selection using hydrocyclones within continuous-flow anaerobic-anoxic-oxic (A2 O) biological nutrient removal (BNR) bioreactor. The goal was to optimize settleability of biological sludge by lowering and stabilizing sludge volume index (SVI) to improve process robustness and resiliency. Process proved to stabilize operation and to uncouple the total solids residence time (SRT) between floc and granule morphologies. The densified biomass initially produced stable SVI < 100 ml/g for a period of 4 months and thereafter a steady state year-round SVI below 50 ml/g, including the winter period during which the control train SVI expansion >200 ml/g. The densified biomass successfully broke the vicious cycle of interannual bulking. Form and function interrelationship is proposed for the densified biomass (hybrid floc-granule). The concept of biological architecture is proposed as the purposeful control of granule and floc proportions, with a proposed "form factor" ratio of 1:2 granule to floc, that produce a "SRT uncoupling function factor" ratio of 4:1 granule to floc, further resulting in very stable settling and effluent functionalities. PRACTITIONER POINTS: Controlling granule-floc proportions allows for sludge volume index (SVI) operational adjustment, which further allows for increased clarified design accuracy. One-third aggregates dramatically improved settling characteristics: 20% and 35% of AGS ensures SVIs below 100 and 50 ml/g, respectively. Densified biomass enables new SRT and clarifier flux rates approaches for engineering and operation practices: Doubling typical surface loading rates from 6.0-8.5 to 15-20 kg m-2  h-1 and surface overflow rates from 0.6-0.8 to 1.5-2.4 m/h SRT uncoupling of 1:4 is achieved between floc and granule, enabling specific niche environment for fast and slow growing organisms.


Subject(s)
Sewage , Water Resources , Biomass , Bioreactors , Nutrients , Waste Disposal, Fluid
SELECTION OF CITATIONS
SEARCH DETAIL
...