Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Org Chem ; 87(12): 7673-7695, 2022 06 17.
Article in English | MEDLINE | ID: mdl-35667025

ABSTRACT

Benzoquinones can undergo reversible reductions and are attractive candidates for use as active materials in green carbon-based batteries. Related compounds of potential utility include 4,4'-diphenoquinones, which have extended quinonoid structures with two carbonyl groups in different rings. Diphenoquinones are a poorly explored class of compounds, but a wide variety can be synthesized, isolated, crystallized, and fully characterized. Experimental and computational approaches have established that typical 4,4'-diphenoquinones have nearly planar cores in which two cyclohexadienone rings are joined by an unusually long interannular C═C bond. Derivatives unsubstituted at the 3,3',5,5'-positions react readily by hydration, dimerization, and other processes. Association of diphenoquinones in the solid state normally produces chains or sheets held together by multiple C-H···O interactions, giving structures that differ markedly from those of the corresponding 4,4'-dihydroxybiphenyls. Electrochemical studies in solution and in the solid state show that diphenoquinones are reduced rapidly and reversibly at potentials higher than those of analogous benzoquinones. Together, these results help bring diphenoquinones into the mainstream of modern chemistry and provide a foundation for developing redox-active derivatives for use in carbon-based electrochemical devices.


Subject(s)
Benzoquinones , Carbon , Benzoquinones/chemistry , Dimerization , Oxidation-Reduction , Quinones
2.
Langmuir ; 35(48): 15585-15591, 2019 Dec 03.
Article in English | MEDLINE | ID: mdl-31333025

ABSTRACT

Using the surface force apparatus (SFA), the interaction forces between mica surfaces across ionic liquid (IL) solutions are studied. The IL solution, 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide in propylene carbonate solvent, is used at different concentrations to elucidate the ions' conformation at the interface from the analysis of short-range structural forces. A direct correlation between the ion layer thickness at the interface and the IL molar fraction in the solution is observed, suggesting conformational changes relative to the ion packing density. In addition, effects of large microscopic and macroscopic water domains at the interface are investigated. The microscopic water domains induced significant adhesion at contact because of the long-range capillary forces, which are found to depend on solvent concentration. The macroscopic water domains entirely cover the interaction area, ensuring that the long-range interfacial interactions occur entirely across the aqueous electrolyte solution with dissolved IL ions as the electrolyte. These results help elucidate the interfacial interactions in IL-charged solid interfaces with practical importance in green energy storage, catalysis, and lubrication.

3.
Angew Chem Int Ed Engl ; 57(18): 5072-5075, 2018 04 23.
Article in English | MEDLINE | ID: mdl-29493905

ABSTRACT

The resurgence of the lithium metal battery requires innovations in technology, including the use of non-conventional liquid electrolytes. The inherent electrochemical potential of lithium metal (-3.04 V vs. SHE) inevitably limits its use in many solvents, such as acetonitrile, which could provide electrolytes with increased conductivity. The aim of this work is to produce an artificial passivation layer at the lithium metal/electrolyte interface that is electrochemically stable in acetonitrile-based electrolytes. To produce such a stable interface, the lithium metal was immersed in fluoroethylene carbonate (FEC) to generate a passivation layer via the spontaneous decomposition of the solvent. With this passivation layer, the chemical stability of lithium metal is shown for the first time in 1 m LiPF6 in acetonitrile.

4.
Phys Chem Chem Phys ; 19(35): 24255-24263, 2017 Sep 13.
Article in English | MEDLINE | ID: mdl-28848948

ABSTRACT

Entropic changes inherent within a redox process typically result in significant temperature sensitivity. This can be utilised positively or can be a detrimental process. This study has investigated the thermoelectrochemical properties (temperature-dependant electrochemistry) of the ferrocenium|ferrocene redox couple in an ionic liquid, and in particular the effect of covalently tethering this redox couple to fixed positive or negative charges. As such, the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide was employed to dissolve ferrocene, as well as cationic-tethered ferrocene (the 1-ethyl-3-(methylferrocenyl)imidazolium cation) and anionic-tethered ferrocene (the ferrocenylsulfonyl(trifluoromethylsulfonyl)imide anion). These systems were characterised in terms of their voltammetry (apparent formal potentials, diffusion coefficients and electron transfer rate constants) and thermoelectrochemistry (temperature coefficients of the cell potential or 'Seebeck coefficients', short circuit current densities and power density outputs). The oxidised cationic species behaved like a dicationic species and was thus 6-fold more effective at converting waste thermal energy to electrical power within a thermoelectrochemical cell than unmodified ferrocene. This was almost exclusively due to a significant boost in the Seebeck coefficient of this redox couple. Conversely, the oxidised anionic species was formally a zwitterion, but this zwitterionic species behaved thermodynamically like a neutral species. The inverted entropic change upon going from ferrocene to anion-tethered ferrocene allowed development of a largely temperature-insensitive reference potential based upon a mixture of acetylferrocene and ferricenyl(iii)sulfonyl(trifluoromethylsulfonyl)imide.

5.
ACS Appl Mater Interfaces ; 9(34): 28726-28736, 2017 Aug 30.
Article in English | MEDLINE | ID: mdl-28731317

ABSTRACT

We demonstrate an electrochromic device with self-bleaching ability that uses ethyl viologen- ([EV]2+) and ferrocene-based redox ionic liquids ([FcNTf]-) as the electroactive species. These electroactive compounds are insensitive to atmospheric O2 and H2O in both their oxidized and reduced states once dissolved in a typical ionic liquid electrolyte ([BMIm][NTf2]), allowing for the device to be assembled outside a glovebox without any encapsulation. This device could generate a deep blue color by the application of a 2.0 V potential between two fluorine-doped tin oxide (FTO) substrates to oxidize the ferrocenyl centers to [FcNTf]0 while reducing viologen to [EV]+•. Self-bleaching occurs at OCP as [EV]+• and [FcNTf]0 undergo homogeneous electron transfer in the electrolyte. The mass transport of ethyl viologen and ferrocenylsulfonyl(trifluoromethylsulfonyl)imide ([FcNTf]-) anion was evaluated by double potential step chronoamperometry to study the impact of the diffusion coefficient on the self-bleaching mechanism. The electrochromic device demonstrated here shows a contrast ΔT (610 nm) around 40% at 2.0 V as colored cell voltage, a switching time in the order of few seconds for coloration and bleaching, coloration efficiency of 105.4 to 146.2 cm2 C1- at 610 nm, and very high stability (94.8% ΔT after 1000 cycles) despite the presence of O2 and H2O in the electrolyte.

6.
Int J Food Microbiol ; 217: 49-58, 2016 Jan 18.
Article in English | MEDLINE | ID: mdl-26490649

ABSTRACT

Due to lack of adequate control methods to prevent contamination in fresh produce and growing consumer demand for natural products, the use of bacteriophages has emerged as a promising approach to enhance safety of these foods. This study sought to control Listeria monocytogenes in cantaloupes and RTE meat and Escherichia coli O104:H4 in alfalfa seeds and sprouts under different storage conditions by using specific lytic bacteriophage cocktails applied either free or immobilized. Bacteriophage cocktails were introduced into prototypes of packaging materials using different techniques: i) immobilizing on positively charged modified cellulose membranes, ii) impregnating paper with bacteriophage suspension, and iii) encapsulating in alginate beads followed by application of beads onto the paper. Phage-treated and non-treated samples were stored for various times and at temperatures of 4°C, 12°C or 25°C. In cantaloupe, when free phage cocktail was added, L. monocytogenes counts dropped below the detection limit of the plating technique (<1 log CFU/g) after 5 days of storage at both 4°C and 12°C. However, at 25°C, counts below the detection limit were observed after 3 and 6h and a 2-log CFU/g reduction in cell numbers was seen after 24h. For the immobilized Listeria phage cocktail, around 1-log CFU/g reduction in the Listeria count was observed by the end of the storage period for all tested storage temperatures. For the alfalfa seeds and sprouts, regardless of the type of phage application technique (spraying of free phage suspension, bringing in contact with bacteriophage-based materials (paper coated with encapsulated bacteriophage or impregnated with bacteriophage suspension)), the count of E. coli O104:H4 was below the detection limit (<1 log CFU/g) after 1h in seeds and about a 1-log cycle reduction in E. coli count was observed on the germinated sprouts by day 5. In ready-to-eat (RTE) meat, LISTEX™ P100, a commercial phage product, was able to significantly reduce the growth of L. monocytogenes at both storage temperatures, 4°C and 10°C, for 25 days regardless of bacteriophage application format (immobilized or non-immobilized (free)). In conclusion, the developed phage-based materials demonstrated significant antimicrobial effect, when applied to the artificially contaminated foods, and can be used as prototypes for developing bioactive antimicrobial packaging materials capable of enhancing the safety of fresh produce and RTE meat.


Subject(s)
Biological Control Agents/pharmacology , Escherichia coli/growth & development , Food Contamination/prevention & control , Food Packaging/methods , Food Storage/methods , Listeria monocytogenes/growth & development , Myoviridae/metabolism , Alginates , Colony Count, Microbial , Cucumis melo/microbiology , Escherichia coli/virology , Glucuronic Acid , Hexuronic Acids , Listeria monocytogenes/virology , Meat/microbiology , Medicago sativa/microbiology , Temperature
7.
Anal Chim Acta ; 800: 87-94, 2013 Oct 24.
Article in English | MEDLINE | ID: mdl-24120172

ABSTRACT

In this contribution we present a sensitive colorimetric bioactive paper fabricated to determine sialidase-related diseases like bacterial vaginosis (BV) in a one-step and dry format spot assay with fast response and good storage stability. The paper was prepared by three simple steps. The first step involves preparation of poly(ethyleneimine) (PEI) microcapsules, the second step is to incubate positively charged microcapsules in negatively charged 5-bromo-4-chloro-3-indolyl-a-D-N-acetylneuraminic acid (BCIN) solution, a color enhancer nitro blue tetrazolium (NBT), and in the third step, paper was fabricated by incorporating incubated microcapsules into paper pulp. This paper changes color from white to dark purple in the presence of sialidase in as little as 6min, and color could be enhanced with increased length of reaction time. In this reaction system, BCIN was the substrate for sialidase, NBT was the color enhancer, and PEI microcapsules acted as catalyst. The loading efficiency of BCIN was about 22.2%, and filtered BCIN solution could be reused for the next fabrication.


Subject(s)
Colorimetry , Paper , Reagent Kits, Diagnostic/standards , Vaginosis, Bacterial/diagnosis , Capsules/chemistry , Female , Gardnerella vaginalis/enzymology , Gardnerella vaginalis/isolation & purification , Humans , Mobiluncus/enzymology , Mobiluncus/isolation & purification , Mycoplasma hominis/enzymology , Mycoplasma hominis/isolation & purification , N-Acetylneuraminic Acid/analogs & derivatives , N-Acetylneuraminic Acid/chemistry , N-Acetylneuraminic Acid/metabolism , Neuraminidase/metabolism , Polyethyleneimine/chemistry , Tetrazolium Salts/chemistry , Vaginosis, Bacterial/microbiology
8.
Phys Chem Chem Phys ; 15(20): 7713-21, 2013 May 28.
Article in English | MEDLINE | ID: mdl-23595224

ABSTRACT

Electrolytic solutions of lithium-ion batteries can be modified with additives to improve their stability and safety. Electroactive molecules can be used as such additives to act as an electron (redox) shuttle between the two electrodes to prevent overcharging. The electroactive ionic liquid, 1-ferrocenylmethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide (TFSI), was synthesised and its electrochemical properties were investigated when diluted with ethylene carbonate-diethyl carbonate solvent at various concentrations. Cyclic voltammetry data were gathered to determine the redox potential, diffusion coefficient and heterogeneous rate constants of the electroactive imidazolium TFSI ionic liquid in the carbonate solution. The properties of this molecule as an additive in lithium battery electrolytes were studied in standard coin cells with a metallic Li anode and a Li4Ti5O12 cathode.


Subject(s)
Carbonates/chemistry , Electric Power Supplies , Ferrous Compounds/chemistry , Imidazoles/chemistry , Ionic Liquids/chemistry , Lithium/chemistry , Electrochemical Techniques , Electrolytes/chemistry , Ions/chemistry , Metallocenes
9.
J Microencapsul ; 29(7): 636-49, 2012.
Article in English | MEDLINE | ID: mdl-22494033

ABSTRACT

This review highlights the materials, mechanisms and applications of microencapsulation by interfacial polycondensation in different areas. This technology entraps active ingredients inside microcapsules/microspheres, having an average diameter ranging from nanosize to several 100 µ. Polycondensation reactions take place at the boundary of two phases to form the shells of microcapsules or matrix microspheres. The emulsion can be classified into three types: water-in-oil, oil-in-water and oil-in-oil. According to the hydrophilic-lipophilic property of core phase, different active substances, such as proteins, enzymes, insecticides, herbicides, vitamins, catalysts, drugs, essential oils, dyes and phase change materials, have been successfully incorporated into different microcapsules/microspheres. Based on the shell-forming materials, this technology is capable of preparing polyamine, polyurea, polyurethane, polythiourea, polyester, polyepoxide, polyacrylamide and polysiloxane microcapsules. Over the past two decades, microcapsules prepared by interfacial polycondensation have been widely used in carbonless paper, cosmetics, pharmacy, agriculture, energy storage/transfer, thermal insulation/regulation and information and magnetic recording.


Subject(s)
Capsules/chemistry , Microspheres , Nanoparticles/chemistry , Polymers/chemistry , Polymers/chemical synthesis , Animals , Capsules/classification , Humans , Nanoparticles/classification
10.
Biomacromolecules ; 12(6): 2008-15, 2011 Jun 13.
Article in English | MEDLINE | ID: mdl-21568314

ABSTRACT

Poly(ethyleneimine) (PEI) microcapsules containing laccase from Trametes hirsuta (ThL) and Trametes versicolor (TvL) were printed onto paper substrate by three different methods: screen printing, rod coating, and flexo printing. Microcapsules were fabricated via interfacial polycondensation of PEI with the cross-linker sebacoyl chloride, incorporated into an ink, and printed or coated on the paper substrate. The same ink components were used for three printing methods, and it was found that laccase microcapsules were compatible with the ink. Enzymatic activity of microencapsulated TvL was maintained constant in polymer-based ink for at least eight weeks. Thick layers with high enzymatic activity were obtained when laccase-containing microcapsules were screen printed on paper substrate. Flexo printed bioactive paper showed very low activity, since by using this printing method the paper surface was not fully covered by enzyme microcapsules. Finally, screen printing provided a bioactive paper with high water-resistance and the highest enzyme lifetime.


Subject(s)
Enzymes, Immobilized/metabolism , Fungal Proteins/metabolism , Laccase/metabolism , Polyethyleneimine/chemistry , Printing/methods , Trametes/enzymology , Biotechnology/methods , Capsules/chemistry , Capsules/metabolism , Drug Compounding/methods , Enzymes, Immobilized/chemistry , Fungal Proteins/chemistry , Ink , Laccase/chemistry , Lignin/metabolism , Paper , Polyethyleneimine/metabolism , Trametes/chemistry
11.
J Microencapsul ; 27(8): 703-13, 2010.
Article in English | MEDLINE | ID: mdl-20716009

ABSTRACT

Microcapsules for enzyme immobilization were successfully fabricated via interfacial cross-linking of poly(ethyleneimine) (PEI). A method based on laminar jet break-up technique using a commercial instrument developed to produce alginate beads is reported for the first time for production of PEI microcapsules. The diameter, wall thickness and pore size of membranes were obtained from confocal laser scanning microscopy by labelling PEI and proteins. The composition of membranes was analysed by elemental analysis. Larger microcapsules (ca 200 µm diameter) were obtained with the encapsulation device. In comparison, the emulsion method produced smaller capsules (ca 20 µm diameter) but with a wider size distribution. Encapsulation efficiency for both methods was analysed by bicinchoninic acid and fluorescence assays, yielding efficiencies of 94 ± 2% and 83 ± 3% for the emulsion method and encapsulation device, respectively. Glucose oxidase from Aspergillus Niger and Laccase from Trametes Versicolor were encapsulated by both microencapsulation methods and their activities were compared.


Subject(s)
Drug Compounding/instrumentation , Drug Compounding/methods , Glucose Oxidase/chemistry , Laccase/chemistry , Polyethyleneimine/chemistry , Capsules , Emulsions , Indicators and Reagents , Membranes, Artificial , Molecular Weight , Particle Size , Permeability , Thermogravimetry , Vibration
12.
J Chromatogr A ; 1216(47): 8270-6, 2009 Nov 20.
Article in English | MEDLINE | ID: mdl-19767010

ABSTRACT

Microencapsulation is used here as a new technique to immobilize enzymes in a microreactor coupled off-line to capillary electrophoresis (CE), allowing the determination of enzymatic reaction products. The redox enzyme laccase was encapsulated using the method of interfacial cross-linking of poly(ethyleneimine) (PEI). The 50 microm diameter capsules were slurry packed from a suspension into a capillary-sized reactor made easily and quickly from a short length of 530 microm diameter fused-silica tubing. The volume of the bed of laccase microcapsules in the microreactor was in the order of 1.1 microL through which 50 microL of the substrate o-phenylenediamine (OPD) was flowed. The oxidation product 2,3-diaminophenazine (DAP) and the remaining OPD were quantified by CE in a pH 2.5 phosphate buffer. Peak migration time reproducibility was in the order of 0.4% RSD and peak area reproducibility was less than 1.7% RSD within the same day. Using the OPD peak area calibration curve, a conversion efficiency of 48% was achieved for a 2-min oxidation reaction in the microreactor.


Subject(s)
Bioreactors , Electrophoresis, Capillary/methods , Enzymes, Immobilized/chemistry , Laccase/chemistry , Calibration , Drug Compounding , Enzymes, Immobilized/metabolism , Hydrogen-Ion Concentration , Laccase/metabolism , Oxidation-Reduction , Phenazines/chemistry , Phenazines/metabolism , Phenylenediamines/chemistry , Phenylenediamines/metabolism , Reproducibility of Results
13.
Chem Commun (Camb) ; (11): 1182-3, 2002 Jun 07.
Article in English | MEDLINE | ID: mdl-12109072

ABSTRACT

We have studied the oxidation of lignin model compounds by organic and transition metal-based mediators using either an enzyme or an electrolysis cell as the mediator oxidizing agent. Electrolysis of inorganic mediator seems a promising technology for pulp delignification.

SELECTION OF CITATIONS
SEARCH DETAIL
...