Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmacol Res Perspect ; 9(5): e00857, 2021 10.
Article in English | MEDLINE | ID: mdl-34632725

ABSTRACT

Clinically used botulinum neurotoxins (BoNTs) are natural products of Clostridium botulinum. A novel, recombinant BoNT type A1 (rBoNT/A1; IPN10260) has been synthesized using the native amino acid sequence expressed in Escherichia coli and has previously been characterized in vitro and ex vivo. Here, we aimed to characterize rBoNT/A1 in vivo and evaluate its effects on skeletal muscle. The properties of rBoNT/A1 following single, intramuscular administration were evaluated in the mouse and rat digit abduction score (DAS) assays and compared with those of natural BoNT/A1 (nBoNT/A1). rBoNT/A1-injected tibialis anterior was assessed in the in situ muscle force test in rats. rBoNT/A1-injected gastrocnemius lateralis (GL) muscle was assessed in the compound muscle action potential (CMAP) test in rats. The rBoNT/A1-injected GL muscle was evaluated for muscle weight, volume, myofiber composition and immunohistochemical detection of cleaved SNAP25 (c-SNAP25). Results showed that rBoNT/A1 and nBoNT/A1 were equipotent and had similar onset and duration of action in both mouse and rat DAS assays. rBoNT/A1 caused a dose-dependent inhibition of muscle force and a rapid long-lasting reduction in CMAP amplitude that lasted for at least 30 days. Dose-dependent reductions in GL weight and volume and increases in myofiber atrophy were accompanied by immunohistochemical detection of c-SNAP25. Overall, rBoNT/A1 and nBoNT/A1 exhibited similar properties following intramuscular administration. rBoNT/A1 inhibited motoneurons neurotransmitter release, which was robust, long-lasting, and accompanied by cleavage of SNAP25. rBoNT/A1 is a useful tool molecule for comparison with current natural and future modified recombinant neurotoxins products.


Subject(s)
Botulinum Toxins, Type A/pharmacology , Muscle Fibers, Skeletal/drug effects , Muscle, Skeletal/drug effects , Recombinant Proteins/pharmacology , Action Potentials/drug effects , Animals , Injections, Intramuscular , Mice , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/pathology , Muscle Strength/drug effects , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Organ Size , Rats , Synaptosomal-Associated Protein 25/drug effects , Synaptosomal-Associated Protein 25/metabolism
2.
Fitoterapia ; 82(7): 1075-80, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21820038

ABSTRACT

The standardized extract of Ginkgo biloba EGb 761 has been used to reduce cognitive dysfunction. The present study was designed to evaluate the effect of postischemic oral treatment with EGb 761 in a model of vascular dementia in gerbils. Daily oral posttreatment with EGb 761 led to a significant recovery of spatial memory assessed by the object location test, inhibited the decrease in plasma SOD activity and protected the hippocampal CA1 neurons, even when administered after the insult. These data provide further evidence for the therapeutic potential of EGb 761 in the treatment of vascular dementia.


Subject(s)
Dementia, Vascular/drug therapy , Ginkgo biloba , Hippocampus/drug effects , Memory Disorders/drug therapy , Neuroprotective Agents/therapeutic use , Phytotherapy , Plant Extracts/therapeutic use , Animals , Brain Ischemia/blood , Brain Ischemia/complications , Brain Ischemia/drug therapy , Dementia, Vascular/blood , Dementia, Vascular/pathology , Disease Models, Animal , Gerbillinae , Hippocampus/pathology , Memory/drug effects , Memory Disorders/blood , Nerve Degeneration/blood , Nerve Degeneration/drug therapy , Neuroprotective Agents/pharmacology , Plant Extracts/pharmacology , Superoxide Dismutase/blood
3.
Neuropharmacology ; 60(4): 692-700, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21129389

ABSTRACT

The development of L-dopa-induced dyskinesia (LID) remains a major problem in the long-term treatment of Parkinson's disease (PD). This study aimed to assess the effect of the multitargeting molecule BN82451 on LID and to measure striatal mRNA expression of several genes in a rat model of PD. Rats were administered two unilateral injections of 6-OHDA in the striatum. After four weeks, the animals started a chronic daily treatment with increasing doses of L-dopa over a further four-week period. Over the course of L-dopa treatment, the rats developed abnormal involuntary movements (AIMs) classified as locomotive, axial, orolingual and forelimb dyskinesia. In animals rendered dyskinetic by L-dopa, administration of BN82451 at doses ranging from 1 to 10 mg/kg p.o. attenuated the severity of fully-established AIMs in a dose-related manner. This anti-dyskinetic effect could be achieved with lower doses of BN82451 administered sub chronically vs. acute single treatment. The improvement of AIMs is not due to a reduction in the general motor activity of dyskinetic rats. BN82451 treatment significantly reversed the overexpression of c-Fos, FosB and Arc mRNA associated with the dyskinesiogenic action of L-dopa. A significant correlation between the degree of overexpression of c-Fos, FosB and Arc mRNA and the dyskinesiogenic action of L-dopa was observed. The data demonstrate that BN82451 effectively attenuates LID and the associated molecular alterations in an animal model of PD and may represent a treatment option for managing dyskinesia.


Subject(s)
Corpus Striatum/drug effects , Dyskinesia, Drug-Induced/drug therapy , Levodopa/adverse effects , Neuroprotective Agents/therapeutic use , Parkinsonian Disorders/drug therapy , Thiazoles/therapeutic use , Animals , Area Under Curve , Behavior, Animal/drug effects , Chromatography, High Pressure Liquid , Corpus Striatum/metabolism , Dose-Response Relationship, Drug , Dyskinesia, Drug-Induced/metabolism , Gene Expression , Male , Neuroprotective Agents/metabolism , Neuroprotective Agents/pharmacology , Oxidopamine/pharmacology , Parkinsonian Disorders/metabolism , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Reverse Transcriptase Polymerase Chain Reaction , Thiazoles/metabolism , Thiazoles/pharmacology
4.
Fundam Clin Pharmacol ; 24(1): 73-82, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19650853

ABSTRACT

The anti-inflammatory effects of CI-1044 and of the other selective PDE4 inhibitors rolipram and cilomilast were investigated in Brown-Norway (BN) rats, against lipopolysaccharide-induced tumor necrosis factor alpha (TNFalpha) production in whole blood and antigen-induced lung eosinophilia. In vitro, CI-1044 inhibited TNFalpha production with an IC(50) of 0.31 microm being equipotent to Cilomilast (IC(50) = 0.26 microm) and rolipram (IC(50) = 0.11 microm). Given orally, CI-1044 inhibited ex vivo TNFalpha production with an ED(50) value of 0.4 mg/kg after single administration, whereas rolipram (ED(50) = 1.4 mg/kg) and cilomilast (ED(50) = 1.6 mg/kg) were less potent. In the same ex vivo setting, but given repeatedly, CI-1044 led to an ED(50) of 0.5 mg/kg corresponding to a plasma concentration of 82.6 ng/mL (0.22 microm). In vivo, CI-1044 prevented TNFalpha release with an ED(50) of 1 mg/kg p.o. and inhibited ovalbumin-induced lung eosinophilia following single or repeated oral administration with an ED(50) of 3.25 and 4.8 mg/kg p.o., respectively, suggesting the absence of pharmacological tolerance. CI-1044 in this model was equipotent to rolipram (81% inhibition at 10 mg/kg) but better than cilomilast (25% inhibition at 10 mg/kg). Finally, CI-1044 (10 mg/kg) inhibited inflammatory cell recruitment with a long duration of action (up to 8 h) and was still active when given post-challenge. Our data show that CI-1044 is an orally active PDE4 inhibitor that may be used as an anti-inflammatory therapy in lung inflammatory diseases.


Subject(s)
Azepines/pharmacology , Inflammation/drug therapy , Niacinamide/analogs & derivatives , Phosphodiesterase 4 Inhibitors , Phosphodiesterase Inhibitors/pharmacology , Administration, Oral , Animals , Azepines/administration & dosage , Carboxylic Acids/administration & dosage , Carboxylic Acids/pharmacology , Cyclohexanecarboxylic Acids , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Administration Schedule , Inflammation/physiopathology , Inhibitory Concentration 50 , Lipopolysaccharides , Male , Niacinamide/administration & dosage , Niacinamide/pharmacology , Nitriles/administration & dosage , Nitriles/pharmacology , Phosphodiesterase Inhibitors/administration & dosage , Pulmonary Eosinophilia/drug therapy , Pulmonary Eosinophilia/physiopathology , Rats , Rats, Inbred BN , Rolipram/administration & dosage , Rolipram/pharmacology , Tumor Necrosis Factor-alpha/drug effects , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...