Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Br J Dermatol ; 184(1): 123-132, 2021 01.
Article in English | MEDLINE | ID: mdl-32271940

ABSTRACT

BACKGROUND: Ultraviolet radiation (UVR) is responsible for keratinocyte cancers through the induction of mutagenic cyclobutane pyrimidine dimers (CPDs). Many factors influence CPD repair in epidermal keratinocytes, and a better understanding of those factors might lead to prevention strategies against skin cancer. OBJECTIVES: To evaluate the impact of dermal components on epidermal CPD repair efficiency and to investigate potential factors responsible for the dermal-epidermal crosstalk modulating UVR-induced DNA damage repair in keratinocytes. METHODS: A model of self-assembled tissue-engineered skin containing human primary keratinocytes and fibroblasts was used in this study. RESULTS: We showed that CPD repair in keratinocytes is positively influenced by the presence of a dermis. We investigated the secretome and found that the cytokine CXCL5 is virtually absent from the culture medium of reconstructed skin, compared with media from fibroblasts and keratinocytes alone. By modulating CXCL5 levels in culture media of keratinocytes, we have shown that CXCL5 is an inhibitor of CPD repair. CONCLUSIONS: This work outlines the impact of the secreted dermal components on epidermal UVR-induced DNA damage repair and sheds light on a novel role of CXCL5 in CPD repair.


Subject(s)
Pyrimidine Dimers , Ultraviolet Rays , Chemokine CXCL5 , DNA Damage , DNA Repair , Epidermis , Humans , Keratinocytes , Skin , Ultraviolet Rays/adverse effects
2.
J Environ Qual ; 48(3): 549-558, 2019 May.
Article in English | MEDLINE | ID: mdl-31180441

ABSTRACT

Ammonia losses from broadcast urea vary based on soil physical and chemical properties; however, less is known about how soil properties affect NH losses after subsurface banding of urea. Therefore, three field trials were established to determine how initial soil moisture, clod size, and clay content affect NH volatilization from subsurface-banded (0.025-m depth) urea using wind tunnels. The first study measured volatilization after banding in a loamy mixed frigid Typic Humaquept at 50, 100, 150, 200, or 250 g kg gravimetric water content (WC). Study 2 measured volatilization from the same soil after covering the bands with soil clods that ranged from <2 to >24 mm in diameter, whereas Study 3 measured volatilization from transplanted, acidic soils with clay contents ranging from 5 to 57%. Cumulative 17-d NH losses for study one ranged from 8.3 to 20.8% of applied N, with the soil wetted to 200 g kg WC experiencing the greatest losses. For Study 2, cumulative NH volatilization losses ranged from 10.8 to 20.8% of applied N, with the greatest losses from the largest clod sizes. For Study 3, NH losses ranged from 2.5 to 51.7% of applied N, with the NH losses correlated to the maximum pH measured in the band ( < 0.001), and to the soil cation exchange capacity ( = 0.054), titratable acidity ( = 0.072), and clay content ( = 0.100). However, the soil with high silt, not sand, content had the highest volatilization losses, suggesting that high silt soils may have the greatest potential for NH volatilization.


Subject(s)
Ammonia , Soil , Clay , Urea , Volatilization
3.
Nature ; 557(7704): 233-237, 2018 05.
Article in English | MEDLINE | ID: mdl-29720661

ABSTRACT

Over 60 years ago, stone tools and remains of megafauna were discovered on the Southeast Asian islands of Flores, Sulawesi and Luzon, and a Middle Pleistocene colonization by Homo erectus was initially proposed to have occurred on these islands1-4. However, until the discovery of Homo floresiensis in 2003, claims of the presence of archaic hominins on Wallacean islands were hypothetical owing to the absence of in situ fossils and/or stone artefacts that were excavated from well-documented stratigraphic contexts, or because secure numerical dating methods of these sites were lacking. As a consequence, these claims were generally treated with scepticism 5 . Here we describe the results of recent excavations at Kalinga in the Cagayan Valley of northern Luzon in the Philippines that have yielded 57 stone tools associated with an almost-complete disarticulated skeleton of Rhinoceros philippinensis, which shows clear signs of butchery, together with other fossil fauna remains attributed to stegodon, Philippine brown deer, freshwater turtle and monitor lizard. All finds originate from a clay-rich bone bed that was dated to between 777 and 631 thousand years ago using electron-spin resonance methods that were applied to tooth enamel and fluvial quartz. This evidence pushes back the proven period of colonization 6 of the Philippines by hundreds of thousands of years, and furthermore suggests that early overseas dispersal in Island South East Asia by premodern hominins took place several times during the Early and Middle Pleistocene stages1-4. The Philippines therefore may have had a central role in southward movements into Wallacea, not only of Pleistocene megafauna 7 , but also of archaic hominins.


Subject(s)
Fossils , Hominidae , Tool Use Behavior , Aluminum Silicates , Animal Migration , Animals , Clay , Electron Spin Resonance Spectroscopy , Geologic Sediments , History, Ancient , Philippines , Radiometric Dating
4.
Rev Sci Instrum ; 88(10): 104502, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29092488

ABSTRACT

We developed a spinner magnetometer to measure the natural remanent magnetization of large Apollo lunar rocks in the storage vault of the Lunar Sample Laboratory Facility (LSLF) of NASA. The magnetometer mainly consists of a commercially available three-axial fluxgate sensor and a hand-rotating sample table with an optical encoder recording the rotation angles. The distance between the sample and the sensor is adjustable according to the sample size and magnetization intensity. The sensor and the sample are placed in a two-layer mu-metal shield to measure the sample natural remanent magnetization. The magnetic signals are acquired together with the rotation angle to obtain stacking of the measured signals over multiple revolutions. The developed magnetometer has a sensitivity of 5 × 10-7 Am2 at the standard sensor-to-sample distance of 15 cm. This sensitivity is sufficient to measure the natural remanent magnetization of almost all the lunar basalt and breccia samples with mass above 10 g in the LSLF vault.

5.
Science ; 338(6108): 785-8, 2012 Nov 09.
Article in English | MEDLINE | ID: mdl-23065902

ABSTRACT

Tissint (Morocco) is the fifth martian meteorite collected after it was witnessed falling to Earth. Our integrated mineralogical, petrological, and geochemical study shows that it is a depleted picritic shergottite similar to EETA79001A. Highly magnesian olivine and abundant glass containing martian atmosphere are present in Tissint. Refractory trace element, sulfur, and fluorine data for the matrix and glass veins in the meteorite indicate the presence of a martian surface component. Thus, the influence of in situ martian weathering can be unambiguously distinguished from terrestrial contamination in this meteorite. Martian weathering features in Tissint are compatible with the results of spacecraft observations of Mars. Tissint has a cosmic-ray exposure age of 0.7 ± 0.3 million years, consistent with those of many other shergottites, notably EETA79001, suggesting that they were ejected from Mars during the same event.


Subject(s)
Mars , Meteoroids , Carbon Isotopes/analysis , Iron Compounds/analysis , Magnesium Compounds/analysis , Nitrogen Isotopes/analysis , Oxygen Isotopes/analysis , Silicates/analysis
6.
J Environ Qual ; 41(4): 1290-300, 2012.
Article in English | MEDLINE | ID: mdl-22751074

ABSTRACT

Physical, chemical, or biological treatment of animal liquid manure generally produces a dry-matter rich fraction (DMF) that contains most of the initial phosphorus (P). Our objective was to assess the solubility and plant availability of P from various DMFs as a function of soil P status. Eight different DMFs were obtained from liquid swine (LSM) and dairy cattle (LDC) manures treated by natural decantation, anaerobic digestion, chemical flocculation, composting, or mechanical separation. The DMFs were compared with mineral P fertilizer in a pot experiment with oat ( L.) grown in four soils with varied P-fixing capacities and P saturation levels. The DMFs were added at a rate of 50 mg P kg soil and incubated 14 d before seeding. Soil water-extractable P (P) at all water:soil extraction ratios (2:1, 20:1, and 200:1) was slightly higher when DMFs were derived from LDC rather than LSM. Soil P at the 2:1 ratio was lower with anaerobically digested LSM. At the 2:1 extraction ratio, DMF P was less soluble than mineral P as P saturation in soils increased. In soils with a lower P-fixing capacity, DMF P appeared less water soluble than mineral P under 20:1 and 200:1 extraction ratios. After 72 d of plant growth, DMFs produced yields comparable to mineral P fertilizer. Although the plant availability of P from DMFs was comparable to mineral P fertilizer, P from DMFs could be less vulnerable to leaching or runoff losses in soils with a high P saturation level or low P-fixing capacity.


Subject(s)
Avena/metabolism , Manure/analysis , Phosphorus/chemistry , Phosphorus/metabolism , Soil/chemistry , Water/chemistry , Anaerobiosis , Animals , Avena/drug effects , Avena/growth & development , Biomass , Cattle , Swine
7.
J Environ Manage ; 90(8): 2531-6, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19233543

ABSTRACT

A need exists to improve the utilization of manure nutrients by minimizing NH(3) emissions from land application of manure. Management strategies to reduce NH(3) emissions are available; however, few have been validated under Canadian conditions. A well tested and accurate simulation model, however, can help overcome this challenge by determining appropriate management strategies for a given set of field conditions. The Volt'Air simulation model was utilized to estimate NH(3) volatilization from manure spreading for various manure spreading considerations under a range of atmospheric conditions typically encountered in eastern Canada. Considerations included: (i) soil liming, (ii) time of day of manure spreading, (iii) rainfall (timing and amount) and (iv) manure incorporation (timing, depth and manure coverage). Results demonstrated that liming to increase soil pH, increased NH(3) emissions by 3.3 kg ha(-1) for each increment of 0.1 pH (up to a 1.5 total increase), over no liming at 34.6 kg ha(-1). For each hour delay in manure spreading past 0800 h, NH(3) losses were reduced by 1.5 kg ha(-1). Rainfall (10mm) at least 20 h after manure application reduced losses, with increased reductions at higher rainfall amounts. Incorporation soon (1h) after application was best for NH(3) mitigation. Increasing the depth of incorporation by 5c m reduced NH(3) emissions by 4.4 kg ha(-1); also increasing manure coverage by incorporation reduced losses by 2 kg ha(-1) for each 10% increase in coverage, compared to surface application at 34.6 kg ha(-1). This investigation using Volt'Air yielded valuable information about simulating manure management strategies and the magnitude of their effects on NH(3) emissions.


Subject(s)
Ammonia/analysis , Conservation of Natural Resources , Manure/analysis , Models, Theoretical
8.
Proc Natl Acad Sci U S A ; 105(47): 18206-11, 2008 Nov 25.
Article in English | MEDLINE | ID: mdl-19011091

ABSTRACT

We report the discovery of large accumulations of micrometeorites on the Myr-old, glacially eroded granitic summits of several isolated nunataks in the Victoria Land Transantarctic Mountains. The number (>3,500) of large (>400 mum and up to 2 mm in size) melted and unmelted particles is orders of magnitudes greater than other Antarctic collections. Flux estimates, bedrock exposure ages and the presence of approximately 0.8-Myr-old microtektites suggest that extraterrestrial dust collection occurred over the last 1 Myr, taking up to 500 kyr to accumulate based on 2 investigated find sites. The size distribution and frequency by type of cosmic spherules in the >200-mum size fraction collected at Frontier Mountain (investigated in detail in this report) are similar to those of the most representative known micrometeorite populations (e.g., South Pole Water Well). This and the identification of unusual types in terms of composition (i.e., chondritic micrometeorites and spherulitic aggregates similar to the approximately 480-kyr-old ones recently found in Antarctic ice cores) and size suggest that the Transantarctic Mountain micrometeorites constitute a unique and essentially unbiased collection that greatly extends the micrometeorite inventory and provides material for studies on micrometeorite fluxes over the recent ( approximately 1 Myr) geological past.

9.
Astrobiology ; 6(3): 423-36, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16805698

ABSTRACT

A short critical review is provided on two questions linking magnetism and possible early life on Mars: (1) Did Mars have an Earth-like internal magnetic field, and, if so, during which period and was it a requisite for life? (2) Is there a connection between iron minerals in the martian regolith and life? We also discuss the possible astrobiological implications of magnetic measurements at the surface of Mars using two proposed instruments. A magnetic remanence device based on magnetic field measurements can be used to identify Noachian age rocks and lightning impacts. A contact magnetic susceptibility probe can be used to investigate weathering rinds on martian rocks and identify meteorites among the small regolith rocks. Both materials are considered possible specific niches for microorganisms and, thus, potential astrobiological targets. Experimental results on analogues are presented to support the suitability of such in situ measurements.


Subject(s)
Exobiology , Iron , Magnetics , Minerals , Ice , Mars
10.
Adv Space Res ; 34(8): 1702-9, 2004.
Article in English | MEDLINE | ID: mdl-15934176

ABSTRACT

In view to prepare Mars human exploration, it is necessary to promote and lead, at the international level, a highly interdisciplinary program, involving specialists of geochemistry, geophysics, atmospheric science, space weather, and biology. The goal of this program will be to elaborate concepts of individual instruments, then of integrated instrumental packages, able to collect exhaustive data sets of environmental parameters from future landers and rovers of Mars, and to favour the conditions of their implementation. Such a program is one of the most urgent need for preparing human exploration, in order to develop mitigation strategies aimed at ensuring the safety of human explorers, and minimizing risk for surface operations. A few main areas of investigation may be listed: particle and radiation environment, chemical composition of atmosphere, meteorology, chemical composition of dust, surface and subsurface material, water in the subsurface, physical properties of the soil, search for an hypothesized microbial activity, characterization of radio-electric properties of the Martian ionosphere. Scientists at the origin of the present paper, already involved at a high degree of responsibility in several Mars missions, and actively preparing in situ instrumentation for future landed platforms (Netlander--now cancelled, MSL-09), express their readiness to participate in both ESA/AURORA and NASA programs of Mars human exploration. They think that the formation of a Mars Environment working group at ESA, in the course of the AURORA definition phase, could act positively in favour of the program, by increasing its scientific cross-section and making it still more focused on human exploration.


Subject(s)
Atmosphere/chemistry , Cosmic Radiation , Mars , Soil/analysis , Space Flight , Atmosphere/analysis , Exobiology , Geological Phenomena , Geology , Meteoroids , Meteorological Concepts , Soil Microbiology , Telecommunications , Water
11.
Adv Space Res ; 27(2): 189-93, 2001.
Article in English | MEDLINE | ID: mdl-11603400

ABSTRACT

We present the principle of the EXOCAM chamber, devoted to the study of physical-chemical interactions between the atmosphere and the surface and subsurface in Mars conditions. The purpose of this experiment is to reach a better knowledge of the physical and chemical processes that altered the atmosphere-soil coupled system. We describe the scientific goals of EXOCAM, the multiple fields that will benefit from this experiment and the instrumentation that is devoted to the analysis of the results. We also give a description of the chamber and its main devices.


Subject(s)
Atmosphere/chemistry , Exobiology/instrumentation , Mars , Soil , Astronomy/instrumentation , Equipment Design , Extraterrestrial Environment , Hydrogen Peroxide/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...