Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 271(Pt 1): 132569, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38797303

ABSTRACT

Food packaging based on natural polymers from polysaccharides and proteins can be an alternative to replace conventional plastics. In the present study, semi-refined iota carrageenan (SRIC) and fish gelatin (FG) were used as polymer matrix film with different concentration ratios (0.5:1.5 %, 1.0:1.0 % and 1.5:0.5 % w/w) and SiO2-ZnO nanoparticles were incorporated as fillers with the same concentration in all formulas (0.5:1.5 % w/w carrageenan-fish gelatin). This study aimed to develop films for food packaging applications with desirable physical, mechanical, optical, chemical, and microbiological properties. The results showed that incorporating SiO2-ZnO nanoparticles significantly (p < 0.05) improved the films' elongation at break, UV-screening properties, and antimicrobial activity. Also, the films' thickness, degradability, and transparency significantly (p < 0.05) increased with the higher concentration of fish gelatin addition in the SRIC matrix polymer. The best formula was obtained on the SRIC-FG film at the ratio of 1.5:0.5 % w/w, which performed excellent antimicrobial activity. Thus, semi-refined iota carrageenan/fish gelatin-based biocomposite film incorporated with SiO2-ZnO nanoparticles can be potentially developed as eco-friendly and intelligent food packaging materials to resolve traditional plastic-related issues and prevent food waste.


Subject(s)
Carrageenan , Food Packaging , Gelatin , Nanoparticles , Silicon Dioxide , Zinc Oxide , Carrageenan/chemistry , Gelatin/chemistry , Zinc Oxide/chemistry , Silicon Dioxide/chemistry , Nanoparticles/chemistry , Food Packaging/methods , Animals , Fishes , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology
2.
Membranes (Basel) ; 13(1)2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36676907

ABSTRACT

This paper reports the incorporation of cassava starch (CS) at various concentrations into a previously developed ZnO/SiO2-semi-refined kappa carrageenan-based film (SRκC) bionanocomposite and evaluates its performance as minced chicken edible packaging. The incorporation of CS into SRκC-based films aims to provide multifunctional food packaging with enhanced surface morphology, thickness, mechanical properties, and transparency. The effect of the incorporation of various mixing ratios of CS and SRκC (CS:SRκC ratios of 1:3, 1:1, and 3:1) was investigated. The results show that the surface morphology, thickness, and mechanical properties of the SRκC-based films are increased by incorporating CS. Interestingly, a significant shelf-life improvement of up to 6 days is obtained for the application of the CS:SRκC 1:3 film as minced chicken packaging. It is concluded that the incorporation of CS into SRκC-based film is promising for extending the shelf life of minced chicken samples.

SELECTION OF CITATIONS
SEARCH DETAIL
...